17 research outputs found

    Effect of glycerol on endothelium-derived factors in the vasculature of the rabbit kidney

    No full text
    1. In the present study, endothelium-derived relaxing factor (EDRF/nitric oxide (NO)), conversion of big endothelin (ET)-1 to endothelin-1 (ET-1) and the role of reactive oxygen species were investigated in kidneys isolated from glycerol (GLY)-pretreated rabbits. 2. Acetylcholine (ACh)-induced vasodilation that is due to the release of EDRF/NO is significantly decreased, whereas big ET-1-induced vasoconstriction was increased in kidneys isolated from GLY-pretreated rabbits. 3. Pretreatment of rabbits with the xanthine oxidase inhibitor allopurinol and the NO precursor L-arginine reversed the inhibition of ACh-induced vasodilation due to GLY and protects the kidney vasculature. 4. Big ET-1, but not ET-1, responses were found to be significantly increased in kidneys isolated from GLY-pretreated rabbits. This increase is attributed to the higher conversion rate of big ET-1 to ET-1 because the ET-converting enzyme (ECE) inhibitor phosphoramidon, at a concentration of 10-6 mol/L, causes an inhibition in the response to big ET-1 by 52.6% in normal kidneys, whereas this inhibition with the same concentration of phosphoramidon was found to be significantly decreased in kidneys isolated from GLY-pretreated rabbits. 5. The non-selective NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) caused a significant potentiation in the vasoconstrictor response to ET-1 in normal isolated perfused rabbit kidneys. However, L-NAME did not alter the responses to ET-1 in GLY-pretreated kidneys. 6. These results indicate that accumulation of reactive oxygen species causes an inhibition in NO bioavailability. Increased conversion of big ET-1 to ET-1 may also contribute to the mechanism of vascular damage due to GLY
    corecore