57 research outputs found

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei

    Get PDF
    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidence of critical point observable in finite nuclei by study the resulting charged fragments distributions. We have obtained the values for the critical exponents gamma, beta and tau and compare our results with those at lower energy experiment (1.0A GeV data). The values suggest that a phase transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics Journal

    Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV

    Get PDF
    We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5×109 protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit variations on multiple timescales. From 2014 to 2018, we observed recurrent flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. The rigidity dependence of the 27-day periodicity is different from the rigidity dependences of 9-day and 13.5-day periods. Unexpectedly, the strength of 9-day and 13.5-day periodicities increases with increasing rigidities up to ∼10 GV and ∼20 GV, respectively. Then the strength of the periodicities decreases with increasing rigidity up to 100 GV.</p

    Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.</p
    corecore