3 research outputs found
Validation of a Single-Nucleotide Polymorphism-Based Non-Invasive Prenatal Test in Twin Gestations : Determination of Zygosity, Individual Fetal Sex, and Fetal Aneuploidy
We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation
Supplementary Material for: Genetic Etiologies for Chronic Kidney Disease Revealed through Next-Generation Renal Gene Panel
Introduction: Chronic kidney disease (CKD) is a major public health issue in the USA. Identification of monogenic causes of CKD, which are present in ∼10% of adult cases, can impact prognosis and patient management. Broad gene panels can provide unbiased testing approaches, which are advantageous in phenotypically heterogeneous diseases. However, the use and yield of broad genetic panels by nephrologists in clinical practice is not yet well characterized. Methods: Renal genetic testing, ordered exclusively for clinical purposes, predominantly by general and transplant nephrologists within the USA, was performed on 1,007 consecutive unique patient samples. Testing was performed using a commercially available next-generation sequencing-based 382 gene kidney disease panel. Pathogenic (P) and likely pathogenic (LP) variants were reported. Positive findings included a monoallelic P/LP variant in an autosomal dominant or X-linked gene and biallelic P/LP variants in autosomal recessive genes. Results: Positive genetic findings were identified in 21.1% (212/1,007) of cases. A total of 220 positive results were identified across 48 genes. Positive results occurred most frequently in the PKD1 (34.1%), COL4A5 (10.9%), PKD2 (10.0%), COL4A4 (6.4%), COL4A3 (5.9%), and TTR (4.1%) genes. Variants identified in the remaining 42 genes comprised 28.6% of the total positive findings, including single positive results in 26 genes. Positive results in >1 gene were identified in 7.5% (16/212) of cases. Conclusions: Use of broad panel genetic testing by clinical nephrologists had a high success rate, similar to results obtained by academic centers specializing in genetics
