748 research outputs found

    Degradation of Inorganic Nitrogen in Beiyun River of Beijing, China

    Get PDF
    AbstractNitrogen pollution characteristics of Beiyun River and the migration of inorganic nitrogen in sediment-water were studied using laboratory experiment. Extract NH4-N was the dominant pollutants in Beiyun River that caused the severe harm to aquatic system. NH4-N exchange in sediment-water system was observable at different sites. The calculating of NH4-N degradation coefficients showed there was little difference of NH4-N degradation rate at three sites of Beiyun River. Nitrification process was mainly occurred in 12 days and NH4-N can rapidly in the degradation without input

    A REAL TIME MONITORING MODEL OF THE CALCIUM CARBONATE FOULING INDUCTION PERIOD BASED ON THE CONDUCTANCE TITRATION

    Get PDF
    A new method has been developed to monitor the calcium carbonate fouling induction period (CCFIP) in real time. Based on the conductance titration, this paper investigated the forming process of CCFIP by a staticdynamic combined simulation experiment unit. With the help of titration analysis (that is titrimetry), an accurate definition of CCFIP and the corresponding real time monitoring model were built up. The investigation results show that the proposed model applies not only to measure the CCFIP in real time, but also applies to an investigation of the influence of various factors on the CCFIP

    A rapid and cheap protocol for preparation of PCR templates in peanut

    Get PDF
    This paper describes a simple, low cost and reliable DNA template preparation protocol for polymerase chain reaction (PCR) using immature leaves from peanut seeds or leaves from field-grown plants. The technique may find wide utility in studies involving PCR-based molecular markers, rapid screening for transformants and gene cloning

    Microbial modulation in the biomass and toxin production of a red-tide causing alga

    Get PDF
    The effect of S10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions.The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S10 at high concentrations,however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.95– 12.14) • 10-6 MU/cell, a peak toxicity value of 12.14 • 10-6 MU/cell appeared on the 14th day, after which levels decreased gradually.The alga grew well in conditions of pH 6–8 and salinities of 20–34‰. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30‰,after which it declined gradually. S10 at a concentration of 1.02 • 109 cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34‰. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S10 was identified as being a member of the genus Bacillus, the difference in 16S rDNA between S10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the biocontrol of red-tides was discussed

    Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot

    Full text link
    We have used an electromigration technique to fabricate a C60\rm{C_{{60}}} single-molecule transistor (SMT). Besides describing our electromigration procedure, we focus and present an experimental study of a single molecule quantum dot containing an even number of electrons, revealing, for two different samples, a clear out-of-equilibrium Kondo effect. Low temperature magneto-transport studies are provided, which demonstrates a Zeeman splitting of the finite bias anomaly.Comment: 6 pages, 4 figure

    Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    Get PDF
    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold; laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development

    Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates

    Get PDF
    The evolution of InAs quantum dot (QD) formation is studied on GaAs ring-like nanostructures fabricated by droplet homo-epitaxy. This growth mode, exclusively performed by a hybrid approach of droplet homo-epitaxy and Stransky-Krastanor (S-K) based QD self-assembly, enables one to form new QD morphologies that may find use in optoelectronic applications. Increased deposition of InAs on the GaAs ring first produced a QD in the hole followed by QDs around the GaAs ring and on the GaAs (100) surface. This behavior indicates that the QDs prefer to nucleate at locations of high monolayer (ML) step density
    • …
    corecore