169,678 research outputs found

    Octupole degree of freedom for the critical-point candidate nucleus 152^{152}Sm in a reflection-asymmetric relativistic mean-field approach

    Full text link
    The potential energy surfaces of even-even 146156^{146-156}Sm are investigated in the constrained reflection-asymmetric relativistic mean-field approach with parameter set PK1. It is shown that the critical-point candidate nucleus 152^{152}Sm marks the shape/phase transition not only from U(5) to SU(3) symmetry, but also from the octupole-deformed ground state in 150^{150}Sm to the quadrupole-deformed ground state in 154^{154}Sm. By including the octupole degree of freedom, an energy gap near the Fermi surface for single-particle levels in 152^{152}Sm with β2=0.140.26\beta_2 = 0.14 \sim 0.26 is found, and the important role of the octupole deformation driving pair ν2f7/2\nu 2f_{7/2} and ν1i13/2\nu 1i_{13/2} is demonstrated.Comment: 11 pages, 3 figure

    Resonating group method study of kaon-nucleon elastic scattering in the chiral SU(3) quark model

    Full text link
    The chiral SU(3) quark model is extended to include an antiquark in order to study the kaon-nucleon system. The model input parameters bub_u, mum_u, msm_s are taken to be the same as in our previous work which focused on the nucleon-nucleon and nucleon-hyperon interactions. The mass of the scalar meson σ\sigma is chosen to be 675 MeV and the mixing of σ0\sigma_0 and σ8\sigma_8 is considered. Using this model the kaon-nucleon SS and PP partial waves phase shifts of isospin I=0 and I=1 have been studied by solving a resonating group method (RGM) equation. The numerical results of S01S_{01}, S11S_{11}, P01P_{01}, P03P_{03}, and P11P_{11} partial waves are in good agreement with the experimental data while the phase shifts of P13P_{13} partial wave are a little bit too repulsive when the laboratory momentum of the kaon meson is greater than 500 MeV in this present calculation.Comment: 17 pages, 6 figures. Final version for publicatio

    Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films

    Full text link
    We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV ), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV , which are consistent with the behaviors of resistivity versus temperature [\r{ho}(T )] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films onMgOfrom those onMAOand STO, inwhich the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV , corresponding to the hysteretic loop of the \r{ho}(T ) curve, in Fe3O4 thin film grown on MgO

    The Short Range Mechanism of N-N interaction in the Extended Chiral SU(3) Quark Model

    Full text link
    We give the comparisons between the chiral SU(3) quark model and the extended chiral SU(3) quark model. The results show that the phase shifts of NN scattering are very similar. However, the short range mechanisms of nucleon-nucleon interaction are totally different. In the chiral SU(3) quark model, the short range interaction is dominantly from OGE, and in the extended chiral SU(3) quark model, it is dominantly from vector meson exchanges.Comment: 4 pages, 1 figure. Contribution talk at MENU2004, to be published in Int. J. Mod. Phys. A (World Sciences

    Twin roll casting and melt conditioned twin-roll casting of magnesium alloys

    Get PDF
    Recently, BCAST at Brunel University has developed a MCAST (melt conditioning by advanced shear technology) process for conditioning liquid metal at temperature either above or bellow the alloy liquidus using a high shear twin-screw mechanism. The MCAST process has now been combined with the twin roll casting (TRC) process to form an innovative technology, namely, the melt conditioned twin roll casting (MC-TRC) process for casting Al-alloy and Mg-alloy strips. During the MC-TRC process, liquid alloy with a specified temperature is continuously fed into the MCAST machine. By intensive shearing under the high shear rate and high intensity of turbulence, the liquid is transformed into conditioned melt with uniform temperature and composition throughout the whole volume. The conditioned melt is then fed continuously into the twin-roll caster for strip production. The experimental results show that the AZ91D MC-TRC strips with different thicknesses have fine and uniform microstructure. The strip consists of equiaxed grains with a mean size of 60-70μm. The strip displays extremely uniform grain size and composition throughout the whole cross-section. Investigation also shows that both TRC and MC-TRC processes with reduced deformation are effective to reduce the formation of defects, particularly the formation of the central line segregations
    corecore