38,956 research outputs found
Recommended from our members
Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing
This paper presents a hydrodynamic analysis of binary immiscible metallurgical flow by a numerical simulation of the rheomixing process. The concept of multi-controll is proposed for classifying complex processes and identifying individual processes in an immiscible alloy system in order to perform simulations. A brief review of fabrication methods for immiscible alloys is given, and fluid flow aspects of a novel fabrication method – rheomixing by twin-screw extruder (TSE) are analysed. Fundamental hydrodynamic micro-mechanisms in a TSE are simulated by a piecewise linear (PLIC) volume-of-fluid (VOF) method coupled with the continuum surface force (CFS) algorithm. This revealed that continuous reorientation in the TSE process could produce fine droplets and the best mixing efficiency. It is verified that TSE is a better mixing device than single screw extruder (SSE) and can achieve finer droplets. Numerical results show good qualitative agreement with experimental results. It is concluded that rheomixing by a TSE can be successfully employed for casting immiscible engineering alloys due to its unique characteristics of reorientation and surface renewal
Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys
Gravitational lensing effects arise from the light ray deflection by all of
the mass distribution along the line of sight. It is then expected that weak
lensing cluster surveys can provide us true mass-selected cluster samples. With
numerical simulations, we analyze the correspondence between peaks in the
lensing convergence -map and dark matter halos. Particularly we
emphasize the difference between the peak value expected from a dark
matter halo modeled as an isolated and spherical one, which exhibits a
one-to-one correspondence with the halo mass at a given redshift, and that of
the associated -peak from simulations. For halos with the same expected
, their corresponding peak signals in the -map present a wide
dispersion. At an angular smoothing scale of , our
study shows that for relatively large clusters, the complex mass distribution
of individual clusters is the main reason for the dispersion. The projection
effect of uncorrelated structures does not play significant roles. The
triaxiality of dark matter halos accounts for a large part of the dispersion,
especially for the tail at high side. Thus lensing-selected clusters
are not really mass-selected. (abridged)Comment: ApJ accepte
Recommended from our members
Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes
On controllability of neuronal networks with constraints on the average of control gains
Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently
Recommended from our members
Prospect of Making Ceramic Shell Mold by Ceramic Laser Fusion
Manufacturing prototypical castings by conventional investment casting not only takes
several weeks, but also is prohibitively expensive. Z Corporation in USA, EOS GmbH and
IPT in Germany employ the techniques of 3DP and SLS respectively to make directly ceramic
shell molds for metal castings. Although those techniques dramatically reduce time
expenditure and production cost, each layer cannot be thinner than 50 µm because of using
powder to pave layers. The dimensional accuracy and roughness of the castings still cannot
meet the specification of precision casting. Therefore, in this paper the ceramic laser fusion
(CLF) was used to pave layers. Each layer can be thinner than 25 µm, so that the step effect
can be diminished and the workpiece surface can be smoother; drying time will be shortened
dramatically. Moreover, the inherent solid-state support formed by green portion has the
capability of preventing upward and downward deformation of the scanned cross sections. In
order to make shell mold which meets the roughness requirement (Rq=3.048µm) of the
precision casting, following issues have to be further studied: (1) design a proper ceramic
shell mold structure, (2) design a paving chamber for paving a complete green layer which
can be easily collapsed, (3) cut down drying time, (4) optimize laser scanning process
parameters with the smallest distortion, (5) eliminate sunken area, (6) reduce layer thickness
to less than13µm, (7) control power to guarantee the energy uniformly absorbed by workpiece,
and (8) develop a method which can directly clean green portion in cavity from gate.Mechanical Engineerin
Solidification of Al-Sn-Cu based immiscible alloys under intense shearing
The official published version of the Article can be accessed from the link below - Copyright @ 2009 The Minerals, Metals & Materials Society and ASM InternationalThe growing importance of Al-Sn based alloys as materials for engineering applications
necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform
dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.This work is funded by the EPSRC and
DT
Recommended from our members
Numerical and Experimental Investigation of the Morphology Development of Expansion Clouds by a Powder Jet Flow
Explosion suppression is often the preferred method of explosion attenuation in industry. The morphology development of suppression clouds is important for the design of necessary coverage of the product. This paper presents a numerical and experimental investigation of the growth of powder dispersion as it expands from a discharge nozzle. A Lagrangian stochastic particle-tracking approach and the RNG k-e turbulence model are adopted in the flow field solver for the dispersed and continuous phases. The flow fields coupled with the particle interactions are predicted. The dispersion characteristics of the expansion of the powder cloud through a pipe for short intervals of time are investigated. This was compared with (1) captured images from experiments, (2) experimental data, and (3) results of previous simulations. Particle positions along the jet are presented. The effects of flow rate on the development of the cloud and a comparison with experimental results are also presented. It is noted that the coverage of the powder cloud can be controlled by the flow rate of the jet, and the developing length of the cloud is more influenced by the flow rate of jet flow than the developing width. The good qualitative agreements achieved are useful for further optimisation of product design
- …