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On Controllability of Neuronal Networks with
Constraints on the Average of Control Gains

Yang Tang, Member, IEEE, Zidong Wang, Senior Member, IEEE, Huijun Gao, Senior Member, IEEE,
and Jürgen Kurths

Abstract—Control gains play an important role in the control
of a natural or technical system since they reflect how much
resource is required to optimize a certain control objective. This
paper is concerned with the controllability of neuronal networks
with constraints on the average value of the control gains injected
in driver nodes, which are in accordance with engineering and
biological backgrounds. In order to deal with constraints on
control gains, the controllability problem is transformed into a
constrained optimization problem (COP). The introduction of the
constraints on the control gains unavoidably leads to substantial
difficulty in finding feasible solutions as well as refining solutions.
As such, a modified dynamic hybrid framework (MDyHF) is
developed to solve this COP, based on an adaptive differential
evolution and the concept of Pareto dominance. By comparing
with statistical methods and several recently reported constrained
optimization evolutionary algorithms (COEAs), we show that our
proposed MDyHF is competitive and promising in studying the
controllability of neuronal networks. Based on the MDyHF, we
proceed to show the controlling regions under different levels of
constraints. It is revealed that we should allocate the control gains
economically when strong constraints are considered. In addition,
it is found that, as the constraint becomes more restrictive, the
driver nodes are more likely to be selected from the nodes with
a large degree. The results and methods presented in this paper
will provide insightful lights on developing new techniques to
control a realistic complex network efficiently.

Index Terms—synchronization, pinning control, neuronal net-
works, evolutionary algorithms.

I. INTRODUCTION

The past one decade has witnessed a tremendous upsurge
in the research interest toward theoretical modeling, analysis
and application of complex networks from a variety of research
communities [1]. The main reason lies in the fact that complex
networks can describe many practical systems such as genetic
networks, social networks, sensor networks, neuronal net-
works, electronic networks or transportation networks. Among
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them, the modeling of neuronal networks of a brain can be
viewed as a typical application of complex networks [2], [3]. In
[4]–[6], the theoretical modeling, tackling learning of neuronal
networks and the applications of neuronal networks to image
processing have been investigated, respectively. Modern brain
mapping approaches such as diffusion MRI, functional MRI,
EEG, and MEG have constantly produced large datasets of
anatomical and functional connection patterns. Complex net-
work theory has been used to describe important properties
of large connection datasets by quantifying structures of their
respective network representations. It has been widely recog-
nized that network characterization of structural and functional
connectivity data of brain has attracted increasing attention due
to its reliability and effectiveness [2]. Recently, the existence
has been revealed with respect to the communities, hierarchy,
centrality and distribution of cortical hubs in anatomical con-
nectivity of the mammalian brain [3], [7]–[10].

Complex networks, especially neuronal networks, have been
investigated in the context of dynamical systems and have
already become an interdisciplinary research area for math-
ematicians, computer scientists and biologists to interpret
functional information and explore network robustness and
vulnerability, which are likely to become increasingly relevant
in relation to neuroscience, physics and engineering. Recently,
as an emerging phenomenon of neuroscience and multi-agent
systems, synchronization has gained particular research at-
tention for complex networks (neuronal networks) in various
fields [11]–[17]. Synchronization of distributed brain activity
has been revealed to serve a central role in high-level neural in-
formation processing [18]. Experimentally observed evidence
has asserted that certain brain disorders, such as schizophrenia,
epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease,
are highly relevant to abnormal neural synchronization [19].
In [7], [20], synchronization in the cortical brain network of
the cat is investigated by modeling each node (cortical area)
with a subnetwork of interacting excitable neurons. In [21],
the distributed synchronization problem is investigated for
networks of agent systems with nonlinearities and controller
failure subject to Bernoulli switchings and conditions are given
in terms of a semi-definite programming problem.

On another research frontier, controllability of complex
networks has received considerable attention in the past ten
years. Controllability of complex networks can be referred to
that a set of nodes are regarded as driver nodes/references
and used to control the dynamics of entire networks to a
desired state, which is required for an engineering, medical
or biological purpose [22]–[28]. In particular, as illustrated in
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[28], the importance of investigating controllability of neuronal
networks will not only help us to elucidate how to control an
intricate system efficiently, but also be beneficial to understand
the processing of high level information in brains [7] and
dynamical properties of neuronal networks [10]. Recently, a
variety of works have been proposed to realize pinning control
or detection of controlling regions in complex networks. In
[29], pinning state feedback controllers have been designed to
synchronize a state coupled dynamical networks. In addition
to the mathematical methods to study the controllability of
complex networks, some efforts on choosing key nodes by
utilizing evolutionary methods have been made [27], [28],
[30]. The problem of pinning control of complex networks
has been converted into an unconstrained problem [27] and a
constrained one [28], respectively. In particular, two measures
of controllability of neuronal networks have been incorporated
into one unified framework [28], where the more important
measure is regarded as an objective and the other one is viewed
as a constraint.

It should be noted that, up to now, almost all research efforts
on controllability (pinning control) of complex networks have
been devoted to the case of choosing effective nodes to control
the entire network. However, in reality, constraints on control
gains should be taken into account. The importance of such
considerations resides in twofolds: 1) The first one is from the
constraint on implementation of engineering equipment and
biological background. Saturation in actuator exists widely in
practical control systems as a physical actuator can only gen-
erate bounded signals, and the control of plants with actuator
saturation is also challenging [31]; 2) The second one is that
only suitable control input could result in an ideal control
performance. For example, in therapy, the patient’s recovery
is closely related to the dosage of antibiotics, where the input
of dosage can be viewed as control gains. The excessive
injection of dosage of drugs will result in the creation of
multidrug-resistant bacteria and finally no efficient antibiotics
are available in some severe cases [32], [33]. Misuse of
antibiotics can also destroy the beneficial bacteria and cause
immune system disorders in human body. On the other hand,
a small injection of dosage will not be conducive to patients’
recovery and prolong the recovery time of patients. Therefore,
a dosage should be injected at an appropriate level which
would work on the infected cells and would not upset the
normal mechanism.

For the sake of simplicity, in [25], [28], the controllability
of complex networks and neuronal networks has been investi-
gated, respectively, where the intrinsic constraint on the control
gains on the dynamics of networks has been overlooked and
only the boundary of control gains is discussed. Despite the
fact that many phenomena in nature are closely related to the
constraint on gains on controllability of complex networks,
the gain constraint issue has, unfortunately, been been largely
neglected in the area due primarily to the complexity in
optimizing and tackling the existence of gain constraints. It is,
therefore, the main purpose of this paper to investigate how
much the controllability of weighted and directed neuronal
networks is affected in the presence of constraint on control
gains, which aims to improve our recent work [28], which

does not consider the importance of gain constraints.
In this study, we aim to make the one of the first few

attempts to address the controllability of neuronal networks
with several constraints on control gains. Such a controllability
issue is later converted into a constrained optimization problem
(COP). Due to the nature of combinatorial optimization prob-
lems in selecting controlling nodes, constrained optimization
evolutionary algorithms (COEAs) [34]–[36] are promising
candidates to solve this COP. COEAs are composed of two ma-
jor parts: a search technique and a constraint-handling scheme.
Their performance rests largely on these two components. The
constraint-handling scheme can be categorized into several
classes [35]. In addition, it is important to develop an effective
search algorithm to refine solutions that can find global optimal
solutions for COPs. Recently, multi-objective optimization-
based constraint handling schemes are used to tackle COPs,
together with differential evolution (DE) due to its prospect
and potential [37], [38]. Nonetheless, the search performance
of these methods can still be further improved by introducing
adaptive mechanisms in DEs.

In this paper, the controllability of neuronal networks with
constraints on control gains is investigated. By adding an adap-
tive differential evolution (JaDE) [39] into a search scheme
of a dynamic hybrid framework (DyHF), a modified dynamic
hybrid framework (MDyHF) is proposed here to study con-
trollability of neuronal networks. The main contributions of
this paper are threefold: (1) the average value of control gains
is considered as an constraint in controllability of neuronal
networks and transformed into a COP; (2) based on an adaptive
DE and Pareto dominance, a MDyHF is proposed to show
its competitive performance by several experiments; (3) the
controlling regions of the neuronal network are identified by
the proposed MDyHF and the relationship between controlla-
bility and control gains is presented, which will interpret the
mechanism of controlling natural systems.

The organization of this paper is arraged as follows. Sec-
tion 2 presents some preliminaries and problem formulation
briefly. The MDyHF is presented in Section 3. In Section 4,
comparisons and results are provided. Conclusions are given
in Section 5.

Notation: Throughout this paper, let a graph be G = [V, E ],
where V = {1, · · · , N} denotes the vertex set and E =
{e(i, j)} stands for the edge set. The graph G is directed,
weighted and simple (without self-loops and multiple edges).
Let G = [gij ]Ni,j=1 be the adjacency matrix of neuronal
network of cats’ brain G, which is defined as follows: for any
pair i 6= j, gij < 0 if e(i, j) ∈ E ; otherwise, gij = 0. l ∈ [1, N ]
is the number of driver nodes of a network. φP(·) represents
the characteristic function of the set P , i.e., φP(i) = 1
if i ∈ P; otherwise, φP(i) = 0. gii = −∑N

j=1,j 6=i gij

(i = 1, 2, · · · , N). The adjacency matrix G can be converted
into the Laplacian matrix L by neglecting the weights over the
network. For any pair i 6= j, lij = −1 if e(i, j) ∈ E ; otherwise,
lij = 0. lii = −∑N

j=1,j 6=i lij , (i = 1, 2, · · · , N).

II. PROBLEM FORMULATION

In this section, some preliminaries and problem formulation
are provided.
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A. Controllability of the neuronal network
Hereafter, a desired state can be described as follows:

ds(t)
dt

= F (s(t)).

This differential equation is widely used to represent extensive
real-world natural and technological systems [24].

In order to control the states of the neuronal network to the
reference evolution s(t), the dynamics of the neuronal network
with output feedback controllers can be written as:

dxi(t)
dt

= F (xi, t)− C
N∑

j=1

gijH(xj(t))

− CφP(i)κi(H(s(t))−H(xi(t))),
i = 1, · · · , N, (1)

where xi(t) = [xi1(t), xi2(t), · · · , xid(t)]T ∈ Rd (i =
1, 2 · · · , N) is the state vector of the ith node/brain re-
gion/cortical area, F (xi, t) = [F1(xi, t), · · · , Fd(xi, t)]T is a
continuous vector function and H(xi(t)) is the coupling con-
tinuous function. C is the global coupling gain of the neuronal
network. Let µp = µr

p + jµm
p (j =

√−1), (p = 1, 2, · · · , N),
be the set of eigenvalues of G and are sorted in such a way
that µr

1 ≤ µr
2 ≤ · · · ≤ µr

N . κi, i ∈ P is the control gain
injected in driver nodes. Apparently, 1 ≤ ∑N

i=1 φP(i) ≤ N .
The objective of controllability is to regulate the states of the
neuronal network (1) toward the desired reference state s(t),
i. e., x1(t) = x2(t) = · · · = xN (t) = s(t).

For demonstration purpose, we use cortical network as an
example. Here, G = [gij ]Ni,j=1 is the adjacency matrix of
neuronal network of cats’ brain, where nodes usually represent
brain regions with coherent patterns of extrinsic anatomical
or functional connections, while links stand for anatomical,
functional, or effective connections [40], [41] and are differ-
entiated on the basis of their weight and directionality. Here,
the version of a dataset presented in [42] is used. The cerebral
cortex of cats’ brain can be separated into 53 cortical areas,
linked by about 830 fibres of different densities into a weighted
and directed complex network G. Abundance of evidence
have shown that this network exhibits short average path-
length, high clustering coefficient, the existence of hubs and
hierarchically clusters, implying the information coordination
for effective inter-area communication and for achieving high
functional and structural complexity [7], [9], [43].

Following the way in [25], the extended network of N + 1
dynamical systems yi is considered, where yi = xi for i =
1, 2, . . . , N and yN+1 = s(t). Hence, (1) is:

dyi(t)
dt

= F (yi, t)− C
N+1∑

j=1

WijH(yj(t)),

i = 1, · · · , N + 1, (2)

where H = [Wij ] ∈ R(N+1)×(N+1) in the form of

H =




D1 g12 . . . g1N −φP(1)κ1

g21 D2 . . . g2N −φP(2)κ2

...
. . .

...
...

...
gN1 gN2 . . . DN −φP(N)κN

0 0 . . . 0 0




, (3)

Node 1 Node 2 Node i Node N

Selection of 

pinned nodes 

and gain 

allocation

Fig. 1. Gain allocation of networks. Red rectangle and red line mean that the
node is selected and gain should be allocated in P ; Dark rectangle and blue
line mean that the node is not selected and gain will not be allocated.

in which Di = gii + φP(i)κi. Let λp = λr
p + jλm

p be the pth
eigenvalue of H and suppose that λp is sorted as λr

1 ≤ λr
2 ≤

· · · ≤ λr
N+1, where λr

1 = 0.
The controllability can be measured in terms of

R =
λr

N+1

λr
2

,

and
δ = max

p
{λm

p }.

In order to enhance controllability of neuronal networks, we
should minimize R and δ as much as possible [25], [44].

Remark 1. In previous works, the value of δ was usually
ignored in measuring synchronizability and controllability of
networks [45] since δ is small compared with R in most of
coupling graphs. However, δ cannot be overlooked in some
special cases such as normalized Laplacian matrix or the
number of driver nodes l is large, where the value of δ is
comparable to that of R. Hence, the assumption of neglecting δ
will inevitably cause conservativeness and cannot reflect actual
controllability of networks. In [28], we combine these two
measures into a unified framework to investigate controllability
of networks, in which R is viewed as an objective and δ is
regarded as a constraint.

B. The incorporation of constraint on control gains in con-
trollability of neuronal networks

As stated in [31], [46], the generation of signals is saturated
in realistic networked control systems and artificial neural
networks. Usually, in neural networks, the original network
utilize multiple layers of weight-sum units of the type S =
h(wT x+b), where h(.) is a sigmoid function or logistic func-
tion to be bounded [46], [47]. Also, in biological meaning [32],
[33], though antibiotics are required to treat severe bacterial
infections, misuse will give rise to bacterial resistance and
thereby inhibiting the treatment. Inadequate antibiotics will
prolong the recovery of patients. Therefore, the consideration
of constraints on control gains is very important from the view
of engineering and biology, as seen from Fig. 1. The control
systems under saturation has been investigated in model pre-
dictive control (MPC) [48], networked control systems [31],
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[49] and synchronization of coupled systems [30]. In [21],
the impacts of control gains on distributed synchronization
are shown analytically and an upper bound of control gains
was derived. In [25], by simply assuming the control gain
to be identical in each node, it is shown that there exists an
intermediate control gain to maximize controllability.

It should be noted that, in all the references mentioned
above, control gains under consideration are assumed to be
bounded, which would largely neglect the typical restrictions
in applications. In this paper, we investigate the constraints on
control gains in controllability in detail. Not only the case of
control gains being bounded is studied, but also the total gain
under constraint is investigated.

Remark 2. The problem of resource allocation widely exists
in medicine and engineering. For example, in [50], the authors
investigate the resource allocation in sensor networks, i. e.,
how to allocate limited energy, radio bandwidth, and other
resources to optimize the value of each node’s contribution
to the entire network. In [51], scarcity of resources, such
as drugs, equipment or time make it difficult to supply the
full measure of service and devotion. When circumstances of
scarcity occur, it is necessary to face up to the tradeoffs in a
fair and compassionate manner. In this paper, controllability
of neuronal networks is investigated by taking both boundary
and entire costs of control gains into account simultaneously.

C. Problem transformation into a constrained optimization
problem

Denote K = mean(κi), (i ∈ P), where mean(.) is the mean
value operator. We convert the problem of controllability of a
neuronal network into a COP, where R is here the objective
to be minimized and both δ and K are the constraints.

In the following, some preliminaries of the constrained
optimization problem (COP) are given. The COP is formulated
as follows: find the decision variables y = (y1, · · · , yD) ∈ RD

to minimize the objective function

min fj(y), y ∈ Ω ⊆ S,

where Ω is the feasible region and S is the decision space
defined by the parametric constraints Yi ≤ yi ≤ Zi, i =
1, 2, · · · , D. The decision variables y should satisfy s con-
straints including u inequality constraints

qj(y) ≤ 0, j = 1, 2, · · · , u,

and ι = s− u equality constraints

hj(y) = 0, j = u + 1, 2, · · · , s.

The degree of constraint violation of a vector y on the jth
constraint is defined as

Mj(y) =
{

max{0, qj(y)}, 1 ≤ j ≤ u,
max{0, |hj(y)|}, u + 1 ≤ j ≤ s.

(4)

Then,

Ψ(y) =
s∑

j=1

Mj(y), (5)

reflects the degree of constraint violation of the vector y.
We consider the following two cases in this work:

(i) The first case is formulated as follows:

minR =
λr

N+1

λr
2

,

subject to: q1(y) ≤ 0,

subject to: q2(y) ≤ 0, (6)

where q1(y) = δ − α, q2(y) = K − β, α ∈ [0,+∞) and
β ∈ [0,+∞). If α = +∞, the problem considered here only
focuses on the constraint on K and minimizes R. If α 6= +∞,
the problem considered here focuses on the constraint on K
and δ simultaneously and minimizes the objective R.
(ii) The second case can be written as:

minR =
λr

N+1

λr
2

,

subject to: h1(y) = 0,

subject to: q1(y) ≤ 0, (7)

where h1(y) = δ − α, α = 0 and q1(y) = K− β. The second
case is to minimize R as well as make the inequality and
equality constraints feasible.

Remark 3. Actually, there are two types of constraints on
control gains considered here. The first one is to consider
control gains to be bounded like actuator saturation [31], i.
e., κi(i ∈ P) ∈ [κi,min, κi,max]. In addition to the boundary
of control gains, the constraint on entire costs is also included
and the total costs injected in the networks have to be allocated
in an appropriate way to maximize the controllability of the
network.

Remark 4. Most of existing works studied the pinning
problem of complex networks with undirected graphs [25],
[27], which is a special case of directed graph considered in
this paper. In addition, the criteria for pinning synchronization
or stabilization of complex networks have been presented [29],
[52]. Nonetheless, how to choose driver nodes in complex
networks under different numbers of l still remains open [29],
[52]. The driver nodes should be given beforehand and then
the criteria can be used to check whether the networks are
synchronized. Note that the problem of choosing key nodes
to control the dynamics of the entire network is a natural
combinatorial problem and the design of control gains is a
continuous optimization problem [27], [28], which can be
solved by evolutionary algorithms. Different from these works,
limited costs will affect the selection of key nodes, which will
increase the difficulty and the complexity of the problem, as
stated its importance in Remark 2. To the best of authors’
knowledge, this is one of the first attempts to use con-
straint optimization evolutionary algorithms (COEAs) to study
controllability/pinning control of complex networks/neuronal
networks with several constraints on control gains.

III. MODIFIED DYNAMIC HYBRID FRAMEWORK (MDYHF)
AND ITS ENCODING SCHEME

A. Dynamic hybrid framework (DyHF)

COEAs usually include a search algorithm for refining so-
lutions and a constraint-handling technique to make solutions
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feasible. In [37], a dynamic hybrid framework (DyHF) was
proposed, which includes global and local search schemes.
The global search model is used to refine the solutions,
while the local search model is to motivate the population to
approach or enter the feasible region from different directions
promptly. In order to fit the search environments adaptively,
the global and the local search methods are switched according
to the probabilities of proportion of feasible solutions in
the population. In addition, traditional differential evolution
(DE) works as a search algorithm in global and local search
schemes.

Based on the concept of Pareto dominance used in mul-
tiobjective optimization, the DyHF transforms a COP into
a biobjective optimization problem

−→
F (y) = (f(y),Ψ(y))

by regarding the degree of constraint violation Ψ(y) as an
additional objective. In this way, the original objective function
f(y) and the degree of constraint violation Ψ(y) can be
considered simultaneously when comparing the solutions of
individuals in the population. The performance of DyHF has
been verified on 22 benchmark test functions and it is shown
that DyHF has the capability to solve all the test functions
successfully [37].

Although DyHF is an effective attempt to solve the con-
strained optimization problem, the search engine in DyHF
is not adaptive to fit complicated search circumstances. In
particular, the main purpose of a global search scheme in
DyHF is exploited to detect more promising regions, where a
simple mutation and a crossover scheme from the conventional
DE is utilized. Unfortunately, the traditional DE suffers from
slow convergence speed, lack of ability to find the global
optimum and cannot tune itself to confront with complex
optimization problems. Motivated by these points, we preserve
the constraint-handling approach of the DyHF due to its
efficiency from Pareto dominance and aim to improve the part
of the global search algorithm by an adaptive DE. Note that
the efficiency of adaptive DE (JaDE) was demonstrated in [39]
and here JaDE is utilized to generate offspring to enhance
the search ability of the global search scheme and exploit
more promising areas, which can efficiently adjust the control
parameters in DE and thus make DE adapt to various search
situations. In the following, the numerical experiments will
validate its performance on different dimensional controllabil-
ity problem.

B. MDyHF

1) JaDE: JaDE initializes a population of NP individ-
uals/particles in a D-dimensional search space, which can
be used to deal with our optimization problem. Each in-
dividual can be viewed as a chromosome, representing a
potential solution. After initialization, mutation, crossover,
and selection operators are carried out at each generation
to guide its population towards the global optimum. The
population with its individuals can be written as P =
(y1,n, y2,n, ..., yi,n), i = 1, 2, ..., NP, n = 0, 1, 2, ..., nmax, and
yi,n = (y1

i,n, yj
i,n, ..., yD

i,n), j = 1, 2, ..., D, where n is the
generation counter.

JaDE is used to serve as the search engine in the global

search of DyHF. In JaDE, a mutation strategy and an external
archive are used to provide information of the progress di-
rection. The DE/current-to-εbest strategy adopts multiple best
solutions to balance the convergence speed and the diversity
of the population, which is updated according to the following
equation:

vi,n = yi,n + Fi · (yε
best,n − yi,n) + Fi · (yr1,n − ỹr2,n),

where yε
best,n is randomly selected as one of the top 100ε%

individuals of the current swarm with ε = 0.05. yi,n, yε
best,n,

and yr1,n are chosen from the current population P. ỹr2,n

is randomly selected from the union P ∪ A, where A is an
archive and is used to store the recently explored inferior
solutions. Fi and Ci are the scaling factors associated with the
ith individual and crossover probability, respectively. Fi and
Ci are updated dynamically at each generation according to a
Normal distribution and a Cauchy distribution, respectively:

Fi = randci(ϕF , 0.1), Ci = randni(ϕC , 0.1).

where ϕF is the mean value of a Normal distribution and ϕC is
the mean value of a Cauchy distribution. The two parameters
are initialized to be 0.5 and then adjusted at each generation
according to:

ϕF = (1− w) · ϕF + w ·meanL(SF ),

ϕC = (1− w) · ϕC + w ·meanA(SC),

where w = 0.1 is a constant; SF and SC stand for the set of
all successful mutation/crossover rates; meanA(·) indicates the
usual arithmetic mean and meanL(·) the Lehmer mean:

meanL(SF ) =
∑|SF |

i=1 F2
i∑|SF |

i=1 Fi

.

2) Details of MDyHF: It is worth mentioning that the
major algorithmic structure of the DyHF, i. e., the local search
strategy and the constraint handling technique, are retained in
the MDyHF, the details can be referred to [37].

Remark 5. Note that DE/current-to-εbest strategy is adopted
in JaDE, which means that yε

best,n is randomly selected as
one of the top 100ε% individuals of the current swarm with
ε = 0.05. Different from the single objective optimization
problem, the 100ε% best individuals cannot be measured by
only considering objective values. In this paper, we adopt the
method in [53] and sort the solutions according to dominance,
which is shown in the following way:

A solution i is said to constrained-dominate a solution j, if
any of the following conditions is true:

1) Solution i is feasible but solution j is not.
2) Solutions i and j are both infeasible, but solution i has

a smaller overall constraint violation.
3) Solutions i and j are feasible and solution i dominates

solution j.
Based on JaDE and the above dominance mechanisms, the

adaptive global search model is proposed and concentrates
on exploring more promising regions and refining the overall
objective values of the population. Based on multiobjective
optimization, if ui dominates yi, the trial vector ui will replace
the target vector yi according to Ci, else no replacement take
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places.
By employing the trial vector ui to remove the inferior

target vector yi, the population P is updated through Pareto
dominance. Apparently, our modification of the DyHF is
technically simple and easily implemented. Even so, the
following experimental results will illustrate the encouraging
and promising performance of MDyHF. Therefore, MDyHF
follows the following steps:

1© Set the generation counter n = 0, fe = 0 and obtain
an initial population P by uniformly and randomly generating
from the search space, calculate the objective value f and the
constraint violation Ψ for each individual i, and evaluate the
number of feasible solutions (NOFS) in P.
2© Let χ = NP−NOFS

NP and if rand(0, 1) ≥ χ (where
rand(0, 1) is a uniformly distributed random number between
0 and 1), then the global search with JaDE is implemented
to refine feasible solutions, which is equipped with adaptive
mechanism; otherwise, the local search is used to detect
potential areas of feasible solutions.

3© Compute NOFS in P and set n = n + 1. If the stopping
criterion is met, stop and output the best solution in P, else
go to 2©.

Remark 6. Evolutionary algorithms with an elitism method
(the best individual survives with probability one) such as
MDyHF can be ensured to find the global optimum with
probability 1 if the number of generations tends to infinity,
by using the concept of nonhomogeneous Markov chains, as
proved in [54]–[56].

C. The encoding scheme of COEAs

In this subsection, an appropriate encoding scheme is used
and can be referred to [27]. The encoding scheme consists
of two parts with equal dimension size l: the first one is an
integer search space to denote the locations of the driver nodes
and the second one is a continuous search space to represent
their corresponding control gains.

The encoding scheme is illustrated briefly as follows. For
example, l = 2 areas are selected as driver nodes and the
dimension size D of the swarm is D = 2× l. The parameter
space is set as Yi = 0, Zi = N . Let an individual/particle
be y = (y1, y2, y3, y4) = (31.5, 21.1, 52.3, 12.9). Since the
node index of the network is an integer, the round operators
are performed in the first part of each particle and thus
y = (31.5, 21.1, 52.3, 12.9). Then, the regions (nodes) i = 32
and i = 21 are chosen as driver nodes and controlled, i. e.,
φP(32) = 1 and φP(21) = 1. The second part of the encoding
scheme indicates that the control gains of the regions 32 and
21 are 52.3 and 12.9, respectively, implying κ32 = 52.3 and
κ21 = 12.9. Obviously, the encoding scheme is simple to
implement.

Remark 7. As stated in [27], the search range of each
dimension is assumed to be the same and therefore can be
written as 4y = (Zi − Yi). In order to identify the driver
nodes from N = 53 as a function of l, there are Cl

N

distinct combinations, which is a natural NP-hard problem
and it is difficult to adopt a Brute-force method to select the
driver nodes. In addition, even if the locations of the driver

nodes can be determined a priori, the problem is reduced
into an l-dimensional continuous optimization problem. One
effective method to handle a NP-hard problem is evolutionary
computation algorithms. In this paper, we use MDyHF to study
the controllability of neuronal networks.

IV. MAIN RESULTS

In this section, several examples are presented to verify the
performance of the MDyHF in comparison with two COEAs
and several methods from graph theory. The controlling re-
gions are identified in microscopic and macroscopic ways.

A. Methods for determining the locations of driver nodes

In this subsection, the following methods are used for
detecting the locations of driver nodes/controlling regions.

(i) Degree-based methods. The controlling regions are
selected according to out-degree in an ascending or a descend-
ing way, which are named the ascending and the descending
degree-based methods, respectively.

(ii) Betweenness centrality (BC)-based methods. De-
scending and ascending BC-based methods are used here.

(iii) Closeness-based methods. Two types of closeness-
based methods, i. e. descending and ascending closeness-based
strategies are used.

(iv) Evolutionary algorithm-based methods. COEAs are
used to select driver nodes and design their control gains. Two
evolutionary computation approaches, the CMODE [38] and
the DyHF [37] are used to compared with the MDyHF. The
CMODE and the DyHF have been recently developed and have
shown their advantages over some well-known COEAs [37],
[38].

B. Parameter settings of COEAs

If not mentioned differently, the parameter setting of CO-
EAs is adopted as follows. The maximum fitness evaluation
fe,max is set to fe,max = η ∗ D and D = 2 ∗ l is the
dimension size. η = 18, 750 is a predefined constant. When
comparing the performance among COEAs, COEAs will
be repeated 20 times independently for eliminating random
discrepancy and terminated when COEAs algorithms attain
fe,max. When showing the advantages of MDyHF over statisti-
cal methods, MDyHF will be repeated 10 times when MDyHF
achieves fe,max. The parameter settings of the CMODE and
the DyHF [37], [38], respectively. The parameter setting of
the MDyHF is according to [37], [39]. Similar to [25], in
the degree-based, the BC-based and the closeness-based, the
control gains in all the vertices are supposed to be identical
and are gradually adjusted by a stepsize N

100 gradually.

C. Comparisons of the MDyHF with evolutionary algorithms
and statistical methods

In this subsection, the performance of the proposed MDyHF
is compared with other COEAs and statistical methods in
Sec. IV-A. The COEAs used for comparison are the CMODE
and the DyHF [37], [38]. When compared with COEAs, we
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Fig. 2. Minimizing R using different schemes, α = 0.2 and β = 10 as a function of l. (a) Comparison of R with different schemes as a function of l; (b)
Comparison of δ with different schemes as a function of l; (c) The average control gain K using MDyHF.

TABLE I
SEARCH RESULT COMPARISONS AMONG THREE ALGORITHMS FOR DIFFERENT l OF DRIVER NODES IN THE NEURONAL NETWORK WITH A NETWORK SIZE
N = 53, SEE FIG. 1. THE CALCULATION OF Q IS GIVEN IN (8). ALL THE ALGORITHMS ARE RUN 20 TIMES, η = 12500 AND β = 30. THE BEST RESULTS

AMONG THE THREE ALGORITHMS ARE SHOWN IN BOLD FONTS.

α = 0 α = 0.2
CMODE DyHF MDyHF CMODE DyHF MDyHF

R Ψ R Ψ R Ψ R Ψ R Ψ R Ψ
Mean 46.4711 0 39.0959 0 35.0913 0 39.1083 0 29.5861 0 28.7236 0

l = 6 Best 38.6713 0 31.0939 0 30.0323 0 34.0034 0 28.0146 0 28.1822 0
Q 42.3922 0 34.8661 0 32.4634 0 36.4666 0 28.7896 0 28.4516 0

Mean 27.7295 0 21.3476 0 16.7967 0 23.7688 0 17.9131 0 18.1309 0
l = 12 Best 24.0568 0 16.0881 0 15.461 0 22.6745 0 15.3074 0 15.2964 0

Q 25.8279 0 18.5322 0 16.115 0 23.2152 0 16.5591 0 16.6535 0
Mean 19.9953 0 16.1677 0 11.5577 0 18.441 0 14.3858 0 13.1699 0

l = 18 Best 17.9219 0 12.5422 0 10.8525 0 16.6528 0 10.9857 0 10.2588 0
Q 18.9302 0 14.2401 0 11.1995 0 17.5241 0 12.5713 0 11.6236 0

Mean 18.1467 0 12.5788 0 8.4081 0 14.2305 0 10.7726 0 10.0962 0
l = 24 Best 15.4222 0 9.491 0 7.7428 0 11.8573 0 8.341 0 7.4466 0

Q 16.7291 0 10.9264 0 8.0686 0 12.9898 0 9.4792 0 8.6708 0
Mean 14.0262 0 10.9395 0 6.577 0 12.2628 0 8.7522 0 8.0139 0

l = 30 Best 12.7251 0 7.3187 0 6.1259 0 11.2307 0 6.8406 0 6.759 0
Q 13.3598 0 8.9478 0 6.3474 0 11.7354 0 7.7376 0 7.3598 0

Mean 12.9602 0 9.3311 0 5.5889 0 11.2212 0 7.3659 0 6.4517 0
l = 36 Best 11.0792 0 6.3573 0 4.9809 0 8.8852 0 5.8935 0 5.0716 0

Q 11.9828 0 7.702 0 5.2761 0 9.9851 0 6.5887 0 5.7201 0
Mean 12.5129 0 9.7678 0 4.5777 0 10.3934 0 6.4943 0 5.1529 0

l = 42 Best 8.7404 0 7.4653 0 4.1078 0 8.8442 0 4.808 0 4.1159 0
Q 10.4579 0 8.5393 0 4.3364 0 9.5876 0 5.5879 0 4.6053 0

Mean 11.0912 0 7.6824 0 3.8361 0 8.9326 0 5.0001 0 4.5939 0
l = 48 Best 8.8865 0 5.9346 0 3.2418 0 7.61 0 4.1705 0 3.3113 0

Q 9.9278 0 6.7522 0 3.5265 0 8.2448 0 4.5665 0 3.9002 0

compare the objective value R and the constraint handling re-
sults Ψ. When compared with statistical methods, the objective
value R and the value of δ are compared, since the constraint
on control gains in all the statistical methods are identical and
satisfy the gain constraint.

As stated in [27], both the mean value and the best value of
the solutions are important for measuring the reliability of the
algorithm, the following measure is considered to incorporate
them together

Q =
√

Best×Mean. (8)

Obviously, Q should be made as small as possible.
Firstly, we show the comparison results of COEAs. Table 1

shows the comparison results of CMODE, DyHF and MDyHF
under different dimension size. Table 1 reveals that Ψ achieves

zero in all the three algorithms under different l, implying
that all the three algorithms find feasible solutions. Hence,
we only focus on the objective value R. Clearly, the MDyHF
performs best among the three algorithms. The DyHF performs
better than the CMODE but works worse than the MDyHF.
The improvement of MDyHF arises from the introduction of
JaDE into the global search scheme and retains other parts
of efficient strategies in the MDyHF. After the local model
finds possible feasible solutions, the adaptive global search
method can well adjust itself to various search situations,
thereby improving the performance of DyHF. From the above
observations, the MDyHF is the most powerful algorithm
among the three COEAs. The adaptive global search method
will help the MDyHF to refine solutions and maintain good
convergence speed, while the local search scheme is kept to
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Fig. 3. The degree and closeness information of driver nodes with different schemes as a function of l. (a) The mean values of degree information of driver
nodes with α = 0.2, β = 10 as a function of l; (b) The mean values of closeness information of driver nodes with α = 0.2, β = 10 as a function of l; (c)
The mean values of degree of driver nodes under different β as a function of l, when α = +∞; (d) The mean values of closeness of driver nodes under
different β as a function of l, when α = +∞.

explore feasible solutions. Due to the reliability of the MDyHF,
it is used to carry out the following simulations.

Next, the MDyHF is compared with the statistical schemes
in Sec. IV-A. The statistical methods only deal with minimiz-
ing R and δ is neglected, different from the MDyHF. Also,
since the control gain of each node in neuronal networks is
assumed to be identical in all the statistical methods, the search
boundary of the control gain can be simply assumed to be
[0, β]. In the following, we consider α = 0.2 and β = 10. It
is noteworthy that other parameters will yield similar results.
The comparison of different β will be presented in Sec. IV-F.

Fig. 2(a) shows that the MDyHF performs better than the
other methods in terms of R in most cases. The MDyHF
offers poorer performance than a few methods in terms of R in
several cases, since MDyHF consider the constraint on δ while
the statistical methods neglect the effect of δ. Fig. 2(c) shows
that the average control gain satisfies the constraint β = 10.
Fig. 2(a) shows that, at the initial stage, the descending BC-
based method performs best. When l increases, the descending
degree-based, the descending BC-based, and the ascending

closeness-based strategies are becoming worse. Conversely,
the ascending degree-based, the ascending BC-based and the
descending closeness-based strategies perform well in most
cases, as depicted in Fig. 2(a).

In Fig. 2(b), although some statistical methods might work
better than the MDyHF in terms of R, the MDyHF performs
best among all the methods in terms of δ and the statistical
methods cannot find feasible solutions in all the cases. In
order to satisfy the constraints on δ and β, the MDyHF has
to encounter a tradeoff between losing the performance of
minimizing R to satisfy constraints. Also, when l crosses a
threshold, the MDyHF always salsifies the constraint δ. From
Figs. 2(a) and 2(b), it can be observed that the values of δ
are much smaller than R, especially when l is small. This
is consistent with the findings regarding synchronizability of
complex networks [44], [45]. However, when l increases, δ is
turning more important since R is becoming smaller and the
value of R is comparable to the value of δ.
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TABLE II
CONTROLLING TIMES AND ITS COMMUNITY OF EACH NODE BELONGING TO WHEN OPTIMIZING R UNDER DIFFERENT β , WHEN α = ∞. ξ CAN BE SEEN

FROM EQ. (9).

β = 50 β = 30 β = 10
Node Name ξ Community Node Name ξ Community Node Name ξ Community

VPc 50 Auditory 21a 51 Visual VPc 53 Auditory
2 50 Somato-motor VPc 49 Auditory 36 53 Frontolimbic

AMLS 48 Visual 2 49 Somato-motor 21a 50 Visual
21a 48 Visual AMLS 47 Visual Hipp 49 Frontolimbic
21b 47 Visual Sb 46 Frontolimbic AMLS 48 Visual
PS 47 Visual 21b 44 Visual SII 48 Somato-motor
Sb 46 Frontolimbic AAF 44 Auditory AAF 47 Auditory

ALLS 44 Visual Hipp 44 Frontolimbic Sb 46 Frontolimbic
AAF 44 Auditory ALLS 43 Visual 2 45 Somato-motor
Hipp 44 Frontolimbic PS 43 Visual PLLS 44 Visual

3a 42 Somato-motor SIV 42 Somato-motor 21b 44 Visual
Tem 41 Auditory Tem 41 Auditory ALLS 42 Visual
SIV 41 Somato-motor SII 41 Somato-motor PS 41 Visual

1 40 Somato-motor PLLS 40 Visual P 40 Auditory
DLS 38 Visual 3a 40 Somato-motor 19 39 Visual
PSb 37 Frontolimbic P 39 Auditory 3a 39 Somato-motor

P 36 Auditory DLS 37 Visual Tem 37 Auditory
SII 35 Somato-motor 1 37 Somato-motor 1 37 Somato-motor
4 35 Somato-motor PSb 37 Frontolimbic PSb 35 Frontolimbic

RS 35 Frontolimbic PMLS 35 Visual DLS 34 Visual
PLLS 34 Visual 4 35 Somato-motor SIV 33 Somato-motor
AII 34 Auditory RS 33 Frontolimbic PMLS 32 Visual

PMLS 30 Visual AII 32 Auditory 4 31 Somato-motor
PFCMiI 30 Frontolimbic 19 31 Visual AII 29 Auditory

19 29 Visual 20b 30 Visual 18 27 Visual
VLS 29 Visual PFCMiI 30 Frontolimbic 3b 27 Somato-motor
20b 27 Visual Enr 30 Frontolimbic 35 27 Frontolimbic

SSAo 27 Somato-motor 3b 26 Somato-motor Enr 27 Frontolimbic
3b 26 Somato-motor SSAo 25 Somato-motor RS 25 Frontolimbic
17 25 Visual 18 24 Visual AES 24 Visual
Enr 25 Frontolimbic VLS 24 Visual 20b 23 Visual
18 23 Visual 17 22 Visual AI 22 Auditory
AI 21 Auditory 36 22 Frontolimbic 17 21 Visual
36 21 Frontolimbic 7 20 Visual VLS 20 Visual
4g 20 Somato-motor AI 20 Auditory 4g 20 Somato-motor
61 20 Somato-motor 4g 20 Somato-motor PFCMiI 19 Frontolimbic
7 19 Visual PFCI 19 Frontolimbic Ig 19 Frontolimbic

PFCI 19 Frontolimbic 61 17 Somato-motor 7 15 Visual
Ig 16 Frontolimbic 6m 14 Somato-motor SSAo 15 Somato-motor

5Bm 14 Somato-motor SSAi 14 Somato-motor EPp 13 Auditory
SSAi 14 Somato-motor Ig 14 Frontolimbic 61 13 Somato-motor
6m 12 Somato-motor 5Bm 13 Somato-motor Ia 12 Frontolimbic
Ia 12 Frontolimbic AES 11 Visual SSAi 11 Somato-motor

PFCMd 11 Frontolimbic PFCMd 10 Frontolimbic 5Bm 10 Somato-motor
AES 9 Visual EPp 9 Auditory PFCI 10 Frontolimbic
EPp 8 Auditory Ia 9 Frontolimbic 20a 9 Visual
Cga 7 Frontolimbic 35 7 Frontolimbic 6m 7 Somato-motor
5BI 6 Somato-motor Cga 6 Frontolimbic PFCMd 5 Frontolimbic
35 5 Frontolimbic 20a 5 Visual 5Am 4 Somato-motor

5Am 4 Somato-motor 5BI 4 Somato-motor 5BI 4 Somato-motor
20a 3 Visual 5Am 3 Somato-motor 5AI 3 Somato-motor
CGp 2 Frontolimbic 5AI 2 Somato-motor Cga 3 Frontolimbic
5AI 1 Somato-motor CGp 1 Frontolimbic CGp 0 Frontolimbic

D. Microscopic identification of controlling regions using the
MDyHF under gain constraint

In Figs. 3(a) and 3(b), we show the mean values of the
degree and closeness information of the driver nodes by
various methods as a function of l, when α = 0.2, β = 10.
We find that the mean values of the driver nodes selected
by the MDyHF are intermediate, belonging to the range of
mean values of the ascending and the descending degree-based
schemes, which are also less than the mean values of the
network degree. This phenomenon shows that the nodes with
neither a large nor a small degree are optimal to be selected

as driver nodes. As l increases, the mean values of driver
nodes selected by the MDyHF gradually increase and finally
converge to the mean value of network degree. In summary,
one should pick more nodes with a large degree as l increases,
while the nodes with a small degree should also be chosen.
The findings observed here, which largely depend on l, are
different from the work in [23].
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Fig. 4. Optimizing R by the MDyHF with different β as a function of l, when α = +∞. (a) Comparison of R with different β as a function of l; (b)
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N+1 with different β as a function of l, when α = +∞.

E. Macroscopic identification of controlling regions using the
MDyHF under gain constraint

Due to the efficiency of the MDyHF, the identification of
controlling regions of the neuronal network with different β
is studied now. Denote

ξi =
N∑

l=1

φP(i), (9)

which calculates the times of each node to serve as driver
nodes as a function of l. The regions with a large ξi are more
important to control the network. After control of the neuronal
network with an increase of l (stepsize 1), ξi are sorted under
β = 10, β = 30 and β = 50. The results are illustrated in Table
2. There the regions are sorted according to their importance in
the neuronal networks. Table 2 shows that, there exist some
differences for the pinned times of each node in the three
cases of β. The controlling regions are spread widely in four
communities. It can be found that the regions such as VPc and
21a are important to control the neuronal network to a desired
state, which are different from the usual hubs [9]. Meanwhile,
the regions such as CGp and 5AI are unsuitable to serve as
driver nodes.

F. Comparisons of the MDyHF with different β

In this subsection, enhancing controllability of the neuronal
network is examined using the MDyHF under different con-
straints β. The comparisons of R and K are presented in Figs.
4(a) and 4(b). Fig. 4(a) shows that, when β = 50, the MDyHF
performs best. However, the differences between the lines of
β = 30 and β = 50 are close to each other. When l is large,
the line of β = 50 decays faster than β = 30. Fig. 4(b) shows
that when β = 50, there is no need to use the allowed control
gains completely, i. e. K < 50. However, different from the
case of β = 50, when β = 10 and β = 30, the allocations
of control gains should be used completely to enhance the
controllability of the neuronal network, i. e. K = 10 or
K = 30, respectively. Also, one should carefully allocate the
resources to each node to make the controllability maximal.
This phenomenon shows that there exists an intermediate
control cost to maximize controllability of neuronal networks,

which verifies the phenomena in biological observations and
engineering background [33], [51], as illustrated in Remark
2. In summary, the MDyHF can enhance the controllability of
the neuronal network, while keeping the solutions in a feasible
space.

In Figs. 3(c) and 3(d), the mean values of degree and
closeness of the driver nodes under different l and β are shown.
As l increases, the mean values of the degree of the driver
nodes attain minimum and then increases, which shows a clear
transition of the mean values of the degree of the driver nodes,
i. e., from nodes with a large degree to nodes with a small
degree and again nodes with a large degree. As an increase of
β (the constraint is more restrictive), the driver nodes tend to
be chosen from the nodes with a large degree. The reason for
this is that to enhance controllability of complex networks, the
nodes with a small degree requires a large control input [27].
Therefore, when the constraint on control gains is considered,
we have to control the nodes with a large degree and allocate
control gains economically.

In the following, the dependence of R, λr
2, λr

N+1 on l and
β are investigated in Figs. 4(a) and 4(c). As plotted in Fig.
4(a), we get R(l) ∝ l−γ . In addition, in order to minimize R
whenever β = 10 or β = 50, λr

2 should be increased as much
as possible, while λr

N+1 should be suppressed as much as
possible. Fig. 4(c) shows that the shape of R depends largely
on λr

2 when β = 10 and β = 50. When l → N and β = 50,
λr

2 ≈ λr
N+1 and λr

2 grows faster than λr
N+1, which leads to

R ≈ 1. However, when β = 10, the focus is on keeping λr
N+1

stable and enhance λr
2 as much as possible. λr

2 of β = 50 is
larger than that of β = 10. This observation means that when
more resources are allowed, it is desirable to enlarge λr

2 and
keep λr

N+1 stable to enhance controllability. Therefore, when
more resources are allowed, it is more efficient to find ways
to enlarge λr

2. The above observations show that controlling
λr

2 plays a more important role in controllability than λr
N+1.

V. CONCLUSION

In this study, we investigate the problem of controllability
of a realistic neuronal network of the cat under constraints
on control gains by utilizing a modified dynamic hybrid
framework (MDyHF). The problem of detecting driver nodes
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under constraints on control gains is converted into a con-
strained optimization problem (COP), in which two measures
of controllability R and δ are viewed as an objective and a
constraint, respectively and the constraint on control gains
is regarded as a constraint, thereby the objective and the
constraints are incorporated into one unified framework. By
adding the JaDE with Pareto dominance into the dynamic
hybrid framework (DyHF), the MDyHF can fit the search cir-
cumstances adaptively. By compared with two recent COEAs
and statistical methods, the experimental results demonstrate
the effectiveness of the MDyHF. By using the MDyHF, the
controlling regions under gain constraints are identified. Some
interesting findings about constraints on control gains, the
objective R, the number of driver nodes l and the eigenvalues
of the extended topology graph are illustrated by simulations.
We show that there exist intermediate control costs to enhance
controllability of neuronal networks and the control costs
should be carefully allocated to maximize controllability of
neuronal networks. The effects of constraints on β on con-
trollability of neuronal networks are also investigated and it
is shown that the variation of β does affect the selection of
controlling regions and controllability of neuronal networks.
We find that the controlling regions vary under different β.

Many extensions and refinements of this work are possible.
These include the analysis of data on other kinds of biological
networks, the development of more powerful COEAs to handle
the controllability of neuronal networks and the consideration
of other types of real world constraints. With the arrival of
new methods, it will be feasible to apply our methods to
more natural systems, and thereby to further enhancing our
understanding of how to control a directed and weighted
complex network with a suitable control cost and a small
number of driver nodes.
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