86,466 research outputs found

    Review of the "Bottom-Up" scenario

    Full text link
    Thermalization of a longitudinally expanding color glass condensate with Bjorken boost invariant geometry is investigated within parton cascade BAMPS. Our main focus lies on the detailed comparison of thermalization, observed in BAMPS with that suggested in the Bottom-Up scenario. We demonstrate that the tremendous production of soft gluons via gg→ggggg \to ggg, which is shown in the Bottom-Up picture as the dominant process during the early preequilibration, will not occur in heavy ion collisions at RHIC and LHC energies, because the back reaction ggg→ggggg\to gg hinders the absolute particle multiplication. Moreover, contrary to the Bottom-Up scenario, soft and hard gluons thermalize at the same time. The time scale of thermal equilibration in BAMPS calculations is of order \as^{-2} (\ln \as)^{-2} Q_s^{-1}. After this time the gluon system exhibits nearly hydrodynamic behavior. The shear viscosity to entropy density ratio has a weak dependence on QsQ_s and lies close to the lower bound of the AdS/CFT conjecture.Comment: Quark Matter 2008 Proceeding

    Thermalization of gluon matter including gg<->ggg interactions

    Get PDF
    Within a pQCD inspired kinetic parton cascade we simulate the space time evolution of gluons which are produced initially in a heavy ion collision at RHIC energy. The inelastic gluonic interactions gg↔ggggg \leftrightarrow ggg do play an important role: For various initial conditions it is found that thermalization and the close to ideal fluid dynamical behaviour sets in at very early times. Special emphasis is put on color glass condensate initial conditions and the `bottom up thermalization' scenario. Off-equilibrium 3→23\to 2 processes make up the very beginning of the evolution leading to an initial decrease in gluon number and a temporary avalanche of the gluon momentum distribution to higher transversal momenta.Comment: 6 pages, 8 figures, Talk given at International Conference on Strong and Electroweak Matter (SEWM 2006), BNL, New York, May 200

    Fluence dependent femtosecond quasi-particle and Eu^{2+} -spin relaxation dynamics in EuFe_{2}(As,P)_{2}

    Get PDF
    We investigated temperature and fluence dependent dynamics of the time resolved optical reflectivity in undoped spin-density-wave (SDW) and doped superconducting (SC) EuFe2_{2}(As,P)2_{2} with emphasis on the ordered Eu2+^{2+}-spin temperature region. The data indicate that the SDW order coexists at low temperature with the SC and Eu2+^{2+}-ferromagnetic order. Increasing the excitation fluence leads to a thermal suppression of the Eu2+^{2+}-spin order due to the crystal-lattice heating while the SDW order is suppressed nonthermally at a higher fluence

    News on PHOTOS Monte Carlo: gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma)

    Full text link
    PHOTOS Monte Carlo is widely used for simulating QED effects in decay of intermediate particles and resonances. It can be easily connected to other main process generators. In this paper we consider decaying processes gamma^* -> pi^+ pi^-(gamma) and K^\pm -> pi^+ pi^- e^\pm nu (gamma) in the framework of Scalar QED. These two processes are interesting not only for the technical aspect of PHOTOS Monte Carlo, but also for precision measurement of alpha_{QED}(M_Z), g-2, as well as pi pi scattering lengths.Comment: 6 pages, 11 figures, proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin
    • …
    corecore