29 research outputs found
Electronic spin working mechanically
A single-electron tunneling (SET) device with a nanoscale central island that
can move with respect to the bulk source- and drain electrodes allows for a
nanoelectromechanical (NEM) coupling between the electrical current through the
device and mechanical vibrations of the island. Although an electromechanical
"shuttle" instability and the associated phenomenon of single-electron
shuttling were predicted more than 15 years ago, both theoretical and
experimental studies of NEM-SET structures are still carried out. New
functionalities based on quantum coherence, Coulomb correlations and coherent
electron-spin dynamics are of particular current interest. In this article we
present a short review of recent activities in this area.Comment: 17 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1303.074
Giant lasing effect in magnetic nanoconductors
We propose a new principle for a compact solid-state laser in the 1-100 THz
regime. This is a frequency range where attempts to fabricate small size lasers
up till now have met severe technical problems. The proposed laser is based on
a new mechanism for creating spin-flip processes in ferromagnetic conductors.
The mechanism is due to the interaction of light with conduction electrons; the
interaction strength, being proportional to the large exchange energy, exceeds
the Zeeman interaction by orders of magnitude. On the basis of this
interaction, a giant lasing effect is predicted in a system where a population
inversion has been created by tunneling injection of spin-polarized electrons
from one ferromagnetic conductor to another -- the magnetization of the two
ferromagnets having different orientations. Using experimental data for
ferromagnetic manganese perovskites with nearly 100% spin polarization we show
the laser frequency to be in the range 1-100 THz. The optical gain is estimated
to be of order 10^7 cm^{-1}, which exceeds the gain of conventional
semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental
study is proposed and discussed.Comment: 4 pages, 3 figure
Resonant transmission of normal electrons through Andreev states in ferromagnets
Giant oscillations of the conductance of a superconductor - ferromagnet -
superconductor Andreev interferometer are predicted. The effect is due to the
resonant transmission of normal electrons through Andreev levels when the
voltage applied to the ferromagnet is close to ( is the
spin-dependant part of the electron energy). The effect of bias voltage and
phase difference between the superconductors on the current and the
differential conductance is presented. These efects allow a direct spectroscopy
of Andreev levels in the ferromagnet.Comment: 4 pages, 4 figure
Dissipative Electron Transport through Andreev Interferometers
We consider the conductance of an Andreev interferometer, i.e., a hybrid
structure where a dissipative current flows through a mesoscopic normal (N)
sample in contact with two superconducting (S) "mirrors". Giant conductance
oscillations are predicted if the superconducting phase difference is
varied. Conductance maxima appear when is on odd multiple of due
to a bunching at the Fermi energy of quasiparticle energy levels formed by
Andreev reflections at the N-S boundaries. For a ballistic normal sample the
oscillation amplitude is giant and proportional to the number of open
transverse modes. We estimate using both analytical and numerical methods how
scattering and mode mixing --- which tend to lift the level degeneracy at the
Fermi energy --- effect the giant oscillations. These are shown to survive in a
diffusive sample at temperatures much smaller than the Thouless temperature
provided there are potential barriers between the sample and the normal
electron reservoirs. Our results are in good agreement with previous work on
conductance oscillations of diffusive samples, which we propose can be
understood in terms of a Feynman path integral description of quasiparticle
trajectories.Comment: 24 pages, revtex, 12 figures in eps forma
Random-Matrix Theory of Quantum Transport
This is a comprehensive review of the random-matrix approach to the theory of
phase-coherent conduction in mesocopic systems. The theory is applied to a
variety of physical phenomena in quantum dots and disordered wires, including
universal conductance fluctuations, weak localization, Coulomb blockade,
sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and
giant conductance oscillations in a Josephson junction.Comment: 85 pages including 52 figures, to be published in Rev.Mod.Phy
The morphology of collagen scaffolds for tissue engineering (biocompatibility, biodegradation, tissue reaction)
OBJECTIVE: to perform a comparative morphological study of biocompatibility, biodegradation, and tissue response to implantation of collagen matrices (scaffolds) for tissue engineering in urology and other areas of medicine. MATERIAL AND METHODS: Nine matrix types, such as porous materials reconstructed from collagen solution; a collagen sponge-vicryl mesh composite; decellularized and freeze-dried bovine, equine, and fish dermis; small intestinal submucosa, decellularized bovine dura mater; and decellularized human femoral artery, were implanted subcutaneously in 225 rats. The tissues at the implantation site were investigated for a period of 5 to 90 days. Classical histology and nonlinear optical microscopy (NLOM) were applied. RESULTS: The investigations showed no rejection of all the collagen materials. The period of matrix bioresorption varied from 10 days for collagen sponges to 2 months for decellularized and freeze-dried vessels and vicryl meshes. Collagen was prone to macrophage resorption and enzymatic lysis, being replaced by granulation tissue and then fibrous tissue, followed by its involution. NLOM allowed the investigators to study the number, density, interposition, and spatial organization of collagen structures in the matrices and adjacent tissues, and their change over time during implantation. CONCLUSION: The performed investigation could recommend three matrices: hybrid collagen/vicryl composite; decellularized bovine dermis; and decellularized porcine small intestinal submucosa, which are most adequate for tissue engineering in urology. These and other collagen matrices may be used in different areas of regenerative medicine.10 page(s