8 research outputs found

    Identify and analyze the opportunities and threats of social networks for shahid Beheshti University students

    No full text
    Due to the growth of information and communication technology in societies Especially among students, the use of these technologies has become as part of regular working people. Social networks as one of the most important and widely in cyberspace which is Used by many people in various fields. application of social network by students as young and educated population is important.In this regard, this study aimed to investigate and identify the opportunities and threats for shahid Beheshti University students in social network. This study aims to develop a practical and descriptive methodology. Information obtained from the questionnaires using SPSS statistical analysis software in two parts: descriptive and inferential statistics were analyzed.The results indicate that five variables related to social networking opportunities, including e-learning, leisure, organized social groups, the possibility of dialogue and culture, as well as five variables related to social networking threats, including transfer value unethical, abusive, spreading false information, internet & Communications destructive addiction, has a significant positive effect on students

    Ionic liquid electrolyte additive regulates the multi-species-insertion titanium sulfide cathode for magnesium batteries

    No full text
    Benefiting from the appealing Mg metal anodes, magnesium batteries (MBs) present attractive potential as sustainable batteries of tomorrow. However, the Mg metal anode-compatible electrolytes generally contain large-size and strongly bonded Mg-clusters (i.e., MgxCly2x-y), resulting in the inefficient cathode chemistries associated with the sluggish Mg-species insertion. Here, using the iconic TiS2 cathode, we demonstrate the pronounced effect of ionic liquid on regulating MgxCly2x-y clusters in the MB electrolyte and promoting the high-kinetics multi-Mg-species insertion into TiS2. Specifically, the addition of 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (PP14TFSI) ionic liquid into the conventional Mg bis(hexamethyldisilazide)/4MgCl2 electrolyte induces a nontrivial two-plateau charge/discharge profile of the TiS2 electrode, in which Mg2+ insertion is mainly disclosed at the high-potential plateau and MgCl+ insertion dominates the low-potential plateau. Molecular dynamic simulations indicate that the PP14TFSI additive can dissociate large MgxCly2x-y clusters to produce MgCl+, which can be effectively stabilized by PP14+ and TFSI–. Meanwhile, PP14TFSI catalyzes the Mg-Cl dissociation, thus creating the desirable Mg2+ species. These electrolyte-regulation effects consequently enable the TiS2 cathode with a decent specific capacity (81 mAh g–1 at 10 mA g–1), high rate capability (63 mAh g–1 at 200 mA g–1), and long-term durability (86% capacity retention after 500 cycles)

    Applications of Chitosan as Food Packaging Materials

    No full text
    The interest in biopolymers has increased due to the depletion of the fossil fuel reserve and the environmental impact caused by the accumulation of non-biodegradable plastic-based packaging materials. Many biopolymers have been developed from food waste products to reduce this waste and, at the same time, to obtain new food packaging materials. Chitosan is thus an alternative to synthetic polymers, and a raw material for new materials. To assess the suitability of a material as a food packaging material, it is necessary to study their mechanical and permeability properties. Mechanical properties allow to predict the behaviour of films during transportation, handling and storage of packaged foods. Barrier properties play a key role in maintaining the food product quality. Properties values depend on the type of chitosan used. Mechanical and barrier properties of pure chitosan films are suitable for food packaging and active packaging. These properties can be modified by combining chitosan with other components such as plasticizers, other polysaccharides, proteins and lipids. These combinations adapt the properties of the final polymer to the needs of the food to extend its useful life, while maintaining quality properties of the food and the biodegradability of the polymer. Chitosan displays antimicrobial activity against a wide range of foodborne filamentous fungi, yeast, and gram-negative and gram-positive bacteria. This antimicrobial property and film-forming capacity has made chitosan the reference polymer to develop active packaging with the ability to inhibit the growth of microorganisms and improve food safety. Regarding the optical properties, pure chitosan films in the visible range show high transmittance values, being optically transparent films. This is an important parameter related to the acceptability of the films by the consumer. In addition, chitosan-based films exhibit remarkable UV absorbance, which allows to protect food from lipid oxidations induced by UV radiation

    GNU Radio

    No full text
    GNU Radio is a free & open-source software development toolkit that provides signal processing blocks to implement software radios. It can be used with readily-available, low-cost external RF hardware to create software-defined radios, or without hardware in a simulation-like environment. It is widely used in hobbyist, academic, and commercial environments to support both wireless communications research and real-world radio systems
    corecore