1,519 research outputs found

    Matrix difference equations for the supersymmetric Lie algebra sl(2,1) and the `off-shell' Bethe ansatz

    Get PDF
    Based on the rational R-matrix of the supersymmetric sl(2,1) matrix difference equations are solved by means of a generalization of the nested algebraic Bethe ansatz. These solutions are shown to be of highest-weight with respect to the underlying graded Lie algebra structure.Comment: 10 pages, LaTex, references and acknowledgements added, spl(2,1) now called sl(2,1

    High carotenoid mutants of Chlorella vulgaris show enhanced biomass yield under high irradiance

    Get PDF
    Microalgae represent a carbon-neutral source of bulk biomass, for extraction of high-value compounds and production of renewable fuels. Due to their high metabolic activity and reproduction rates, species of the genus Chlorella are highly productive when cultivated in photo-bioreactors. However, wild-type strains show biological limitations making algal bioproducts ex-pensive compared to those extracted from other feedstocks. Such constraints include inhomoge-neous light distribution due to high optical density of the culture, and photoinhibition of the sur-face-exposed cells. Thus, the domestication of algal strains for industry makes it increasingly important to select traits aimed at enhancing light-use efficiency while withstanding excess light stress. Carotenoids have a crucial role in protecting against photooxidative damage and, thus, represent a promising target for algal domestication. We applied chemical mutagenesis to Chlorella vulgaris and selected for enhanced tolerance to the carotenoid biosynthesis inhibitor norflurazon. The NFR (norflurazon-resistant) strains showed an increased carotenoid pool size and enhanced tolerance towards photooxidative stress. Growth under excess light revealed an improved carbon assimilation rate of NFR strains with respect to WT. We conclude that domestication of Chlorella vulgaris, by optimizing both carotenoid/chlorophyll ratio and resistance to photooxidative stress, boosted light-to-biomass conversion efficiency under high light conditions typical of photobiore-actors. Comparison with strains previously reported for enhanced tolerance to singlet oxygen, reveals that ROS resistance in Chlorella is promoted by at least two independent mechanisms, only one of which is carotenoid-dependent

    Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures

    Get PDF
    Background: Microalgae are efficient producers of lipid-rich biomass, making them a key component in developing a sustainable energy source, and an alternative to fossil fuels. Chlorella species are of special interest because of their fast growth rate in photobioreactors. However, biological constraints still cast a significant gap between the high cost of biofuel and cheap oil, thus hampering perspective of producing CO2-neutral biofuels. A key issue is the inefficient use of light caused by its uneven distribution in the culture that generates photoinhibition of the surface-exposed cells and darkening of the inner layers. Efficient biofuel production, thus, requires domestication, including traits which reduce optical density of cultures and enhance photoprotection. Results: We applied two steps of mutagenesis and phenotypic selection to the microalga Chlorella vulgaris. First, a pale-green mutant (PG-14) was selected, with a 50% reduction of both chlorophyll content per cell and LHCII complement per PSII, with respect to WT. PG-14 showed a 30% increased photon conversion into biomass efficiency vs. WT. A second step of mutagenesis of PG-14, followed by selection for higher tolerance to Rose Bengal, led to the isolation of pale-green genotypes, exhibiting higher resistance to singlet oxygen (strains SOR). Growth in photobioreactors under high light conditions showed an enhanced biomass production of SOR strains with respect to PG-14. When compared to WT strain, biomass yield of the pale green+ sor genotype was enhanced by 68%. Conclusions: Domestication of microalgae like Chlorella vulgaris, by optimizing both light distribution and ROS resistance, yielded an enhanced carbon assimilation rate in photobioreactor

    On osp(2|2) conformal field theories

    Full text link
    We study the conformal field theories corresponding to current superalgebras osp(22)k(1)osp(2|2)^{(1)}_k and osp(22)k(2)osp(2|2)^{(2)}_k. We construct the free field realizations, screen currents and primary fields of these current superalgebras at general level kk. All the results for osp(22)k(2)osp(2|2)^{(2)}_k are new, and the results for the primary fields of osp(22)k(1)osp(2|2)^{(1)}_k also seem to be new. Our results are expected to be useful in the supersymmetric approach to Gaussian disordered systems such as random bond Ising model and Dirac model.Comment: LaTex file 20 pages; Title changed and modifications mad

    A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose

    Get PDF
    High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth

    His bundle pacing, learning curve, procedure characteristics, safety, and feasibility: Insights from a large international observational study

    Get PDF
    Background His‐bundle pacing (HBP) provides physiological ventricular activation. Observational studies have demonstrated the techniques feasibility however, data has come from a limited number of centres. Objectives We set out to explore contemporary global practise in HBP focusing on learning curve, procedural characteristics and outcomes. Methods This is a retrospective, multi‐centre observational study of patients undergoing attempted HBP at seven centres. Pacing indication, fluoroscopy time, HBP thresholds and lead re‐intervention and deactivation rates were recorded. Where centres had systematically recorded implant success rates from the outset, these were collated. Results 529 patients underwent attempted HBP during the study period (2014‐19) with mean follow‐up of 217±303 days. Most implants were for bradycardia indications. In the three centres with systematic collation of all attempts, overall implant success rate was 81% which improved to 87% after completion of 40 cases. All seven centres reported data on successful implants. Mean fluoroscopy time was 11.7±12.0 minutes, His‐bundle capture threshold at implant was 1.4±0.9V at 0.8±0.3 ms and was 1.3±1.2V at 0.9±0.2ms at last device check. HBP lead re‐intervention or deactivation (for lead displacement or rise in threshold) occurred in 7.5% of successful implants. There was evidence of a learning curve: fluoroscopy time and HBP capture threshold reduced with greater experience, plateauing after ~30‐50 cases. Conclusion We found that it is feasible to establish a successful HBP program, using the currently available implantation tools. For physicians who are experienced at pacemaker implantation the steepest part of the learning curve appears to be over the first 30‐50 cases

    Free Will in a Quantum World?

    Get PDF
    In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when they are said to be free is the same as the one particles possess when they are claimed to be free. I then analyze the Free State Theorem (2), which generalizes the Free Will Theorem without the assumption that people are free, and I show that it does not prove anything about free will, since the notion of freedom for particles is either inconsistent, or it does not concern our common understanding of freedom. In both cases, the Free Will Theorem and the Free State Theorem do not provide any enlightenment on the constraints physics can pose on free will

    Relevant boundary perturbations of CFT: A case study

    Get PDF
    We consider simple CFT models which contain massless bosons, or massless fermions or a supersymmetric combination of the two, on the strip. We study the deformations of these models by relevant boundary operators. In particular, we work out the details for a boundary operator with a quadratic dependence on the fields and argue that some of our results can be extended to a more general situation. In the fermionic models, several subtleties arise due to the doubling of zero modes at the UV fixed point and a ``GSO projected'' RG flow. We attempt to resolve these issues and to discuss how bulk symmetries are realised along the flow. We end with some speculations on possible string theory applications of these results.Comment: 16 pages, late

    Scattering and duality in the 2 dimensional OSP(2|2) Gross Neveu and sigma models

    Get PDF
    We write the thermodynamic Bethe ansatz for the massive OSp(2|2) Gross Neveu and sigma models. We find evidence that the GN S matrix proposed by Bassi and Leclair [12] is the correct one. We determine features of the sigma model S matrix, which seem highly unconventional; we conjecture in particular a relation between this sigma model and the complex sine-Gordon model at a particular value of the coupling. We uncover an intriguing duality between the OSp(2|2) GN (resp. sigma) model on the one hand, and the SO(4) sigma (resp. GN model) on the other, somewhat generalizing to the massive case recent results on OSp(4|2). Finally, we write the TBA for the (SUSY version of the) flow into the random bond Ising model proposed by Cabra et al. [39], and conclude that their S matrix cannot be correct.Comment: 41 pages, 27 figures. v2: minor revisio
    corecore