103 research outputs found

    Targeting Angiogenesis in Prostate Cancer

    Get PDF
    This is the author accepted manuscript. The final version is available from MDPI via the DOI in this record.Prostate cancer is the most commonly diagnosed cancer among men in the Western world. Although localized disease can be effectively treated with established surgical and radiopharmaceutical treatments options, the prognosis of castration-resistant advanced prostate cancer is still disappointing. The objective of this study was to review the role of angiogenesis in prostate cancer and to investigate the effectiveness of anti-angiogenic therapies. A literature search of clinical trials testing the efficacy of anti-angiogenic therapy in prostate cancer was performed using Pubmed. Surrogate markers of angiogenic activity (microvessel density and vascular endothelial growth factor A (VEGF-A) expression) were found to be associated with tumor grade, metastasis, and prognosis. Six randomizedstudies were included in this review: two phase II trials on localized and hormone-sensitive disease (n = 60 and 99 patients) and four phase III trials on castration-resistant refractory disease (n = 873 to 1224 patients). Although the phase II trials showed improved relapse-free survival and stabilisation of the disease, the phase III trials found increased toxicity and no significant improvement in overall survival. Although angiogenesis appears to have an important role in prostate cancer, the results of anti-angiogenic therapy in castration-resistant refractory disease have hitherto been disappointing. There are various possible explanations for this lack of efficacy in castration-resistant refractory disease: redundancy of angiogenic pathways, molecular heterogeneity of the disease, loss of tumor suppressor protein phosphatase and tensin homolog (PTEN) expression as well as various VEGF-A splicing isoforms with pro- and anti-angiogenic activity. A better understanding of the molecular mechanisms of angiogenesis may help to develop effective anti-angiogenic therapy in prostate cancer.British Heart FoundationDiabetes U

    Increased Efficacy of Histone Methyltransferase G9a Inhibitors Against <i>MYCN</i>-Amplified Neuroblastoma.

    Get PDF
    Targeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a pediatric solid tumor with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumors is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638, and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumor suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2, and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumors

    Hyperhomocysteinaemia and MTHFR C677T gene polymorphism in renal transplant recipients

    Get PDF
    Aim-To study the effect of folate treatment on hyperhomocysteinaemia and the effect of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism on total homocysteine and folate concentrations after renal transplantation. Methods-A total of 30 transplanted children and adolescents were investigated for total homocysteine and folate serum concentrations before and after folate treatment, as well as for the presence of the MTHFR C677T polymorphism. Results-The allele frequency of C677T polymorphism in the MTHFR gene in the study population (0.33) was not different to that in controls (0.38). Before folate treatment the homocysteine concentration was raised in all groups; following folate supplementation it was significantly decreased in the CC and CT groups, but not in the TT group. In patients with CC genotype, serum homocysteine correlated with serum creatinine and cholesterol, and time since transplantation before treatment. Conclusion-Folate supplementation appears to be an effective strategy to normalise total homocysteine concentration in renal transplanted children and adolescents

    Computer Aided Classification of Neuroblastoma Histological Images Using Scale Invariant Feature Transform with Feature Encoding

    Full text link
    Neuroblastoma is the most common extracranial solid malignancy in early childhood. Optimal management of neuroblastoma depends on many factors, including histopathological classification. Although histopathology study is considered the gold standard for classification of neuroblastoma histological images, computers can help to extract many more features some of which may not be recognizable by human eyes. This paper, proposes a combination of Scale Invariant Feature Transform with feature encoding algorithm to extract highly discriminative features. Then, distinctive image features are classified by Support Vector Machine classifier into five clinically relevant classes. The advantage of our model is extracting features which are more robust to scale variation compared to the Patched Completed Local Binary Pattern and Completed Local Binary Pattern methods. We gathered a database of 1043 histologic images of neuroblastic tumours classified into five subtypes. Our approach identified features that outperformed the state-of-the-art on both our neuroblastoma dataset and a benchmark breast cancer dataset. Our method shows promise for classification of neuroblastoma histological images

    LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    Full text link
    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5

    Correction: LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    Full text link
    Present: The originally supplied Figure 5 contains duplicate total-ERK panels. Correct: The proper Figure 5 appears below. The authors sincerely apologize for this error

    Protein arginine methyltransferase 5 is a key regulator of the MYCN oncoprotein in neuroblastoma cells.

    Full text link
    Approximately half of poor prognosis neuroblastomas (NBs) are characterized by pathognomonic MYCN gene amplification and MYCN over-expression. Here we present data showing that short-interfering RNA mediated depletion of the protein arginine methyltransferase 5 (PRMT5) in cell-lines representative of NBs with MYCN gene amplification leads to greatly impaired growth and apoptosis. Growth suppression is not apparent in the MYCN-negative SH-SY5Y NB cell-line, or in two immortalized human fibroblast cell-lines. Immunoblotting of NB cell-lines shows that high PRMT5 expression is strongly associated with MYCN-amplification (P < 0.004, Mann-Whitney U-test) and immunohistochemical analysis of primary NBs reveals that whilst PRMT5 protein is ubiquitously expressed in the cytoplasm of most cells, MYCN-amplified tumours exhibit pronounced nuclear PRMT5 staining. PRMT5 knockdown in MYCN-overexpressing cells, including the SHEP-21N cell-line with inducible MYCN expression leads to a dramatic decrease in MYCN protein and MYCN-associated cell-death in SHEP-21N cells. Quantitative gene expression analysis and cycloheximide chase experiments suggest that PRMT5 regulates MYCN at a post-transcriptional level. Reciprocal co-immunoprecipitation experiments demonstrated that endogenous PRMT5 and MYCN interact in both SK-N-BE(2)C and NGP cell lines. By using liquid chromatography - tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated MYCN protein, we identified several potential sites of arginine dimethylation on the MYCN protein. Together our studies implicate PRMT5 in a novel mode of MYCN post-translational regulation and suggest PRMT5 plays a major role in NB tumorigenesis. Small-molecule inhibitors of PRMT5 may therefore represent a novel therapeutic strategy for neuroblastoma and other cancers driven by the MYCN oncogene

    IL28B and IL10R -1087 polymorphisms are protective for chronic genotype 1 HCV infection and predictors of response to interferon-based therapy in an East-Central European cohort.

    Get PDF
    BACKGROUND: Previous studies have shown that single nucleotide polymorphisms (SNP) in IL28B and IL10R are associated with sustained virological response (SVR) in chronic hepatitis C patients treated with pegilated interferon plus ribavirin (P/R). The present study extends our earlier investigations on a large East-Central European cohort. The allele frequencies of IL28B and IL10R in genotype 1 HCV infection were compared with that of healthy controls for the purpose of examining the relationship between the polymorphisms and the SVR to P/R treatment. METHODS: A total of 748 chronic HCV1 infected patients (365 male, 383 female; 18-82 years) and 105 voluntary blood donors as controls were enrolled. Four hundred and twenty HCV patients were treated with P/R for 24-72 weeks, out of them 195 (46.4%) achieved SVR. The IL28 rs12979860 SNP was determined using Custom Taqman SNP Genotyping Assays. The IL10R -1087 (also known as IL10R -1082 (rs1800896) promoter region SNP was determined by RT-PCR and restriction fragment length polymorphism analysis. RESULTS: The IL28B CC genotype occurred with lower frequency in HCV patients than in controls (26.1% vs 51.4%, p<0.001). P/R treated patients with the IL28B CC genotype achieved higher SVR rate, as compared to patients with CT (58.6% vs 40.8%, p=0.002). The prevalence of IL10R -1087 GG genotype was lower in patients than in controls (31.8 % vs 52.2%, p<0.001). Among patients achieving SVR, the IL10R -1087 GG genotype occurred with higher frequency than the AA (32.0% vs 17.4%, p=0.013). The IL28B T allele plus IL10R A allele combination was found with higher prevalence in patients than in controls (52% vs 20.7%, p<0.001). The IL28B CC plus IL10R A allele combination occurred with higher frequency among patients with SVR than in non-responders (21.3% vs 12.8%, p=0.026). Both the IL28B CC plus IL10R GG and the IL28B CC plus IL10R A allele combinations occurred with lower frequency in patients than in controls. CONCLUSIONS: In our HCV1 patients, both the IL28B CC and IL10R GG genotypes are associated with clearance of HCV. Moreover, distinct IL28B and IL10R allele combinations appear to be protective against chronic HCV1 infection and predictors of response to P/R therapy

    Evidence for Genetic Overlap Between Schizophrenia and Age at First Birth in Women

    Get PDF
    IMPORTANCE: A recently published study of national data by McGrath et al in 2014 showed increased risk of schizophrenia (SCZ) in offspring associated with both early and delayed parental age, consistent with a U-shaped relationship. However, it remains unclear if the risk to the child is due to psychosocial factors associated with parental age or if those at higher risk for SCZ tend to have children at an earlier or later age. OBJECTIVE: To determine if there is a genetic association between SCZ and age at first birth (AFB) using genetically informative but independently ascertained data sets. DESIGN, SETTING, AND PARTICIPANTS: This investigation used multiple independent genome-wide association study data sets. The SCZ sample comprised 18 957 SCZ cases and 22 673 controls in a genome-wide association study from the second phase of the Psychiatric Genomics Consortium, and the AFB sample comprised 12 247 genotyped women measured for AFB from the following 4 community cohorts: Estonia (Estonian Genome Center Biobank, University of Tartu), the Netherlands (LifeLines Cohort Study), Sweden (Swedish Twin Registry), and the United Kingdom (TwinsUK). Schizophrenia genetic risk for each woman in the AFB community sample was estimated using genetic effects inferred from the SCZ genome-wide association study. MAIN OUTCOMES AND MEASURES: We tested if SCZ genetic risk was a significant predictor of response variables based on published polynomial functions that described the relationship between maternal age and SCZ risk in offspring in Denmark. We substituted AFB for maternal age in these functions, one of which was corrected for the age of the father, and found that the fit was superior for the model without adjustment for the father's age. RESULTS: We observed a U-shaped relationship between SCZ risk and AFB in the community cohorts, consistent with the previously reported relationship between SCZ risk in offspring and maternal age when not adjusted for the age of the father. We confirmed that SCZ risk profile scores significantly predicted the response variables (coefficient of determination R2 = 1.1E-03, P = 4.1E-04), reflecting the published relationship between maternal age and SCZ risk in offspring by McGrath et al in 2014. CONCLUSIONS AND RELEVANCE: This study provides evidence for a significant overlap between genetic factors associated with risk of SCZ and genetic factors associated with AFB. It has been reported that SCZ risk associated with increased maternal age is explained by the age of the father and that de novo mutations that occur more frequently in the germline of older men are the underlying causal mechanism. This explanation may need to be revised if, as suggested herein and if replicated in future studies, there is also increased genetic risk of SCZ in older mothers

    Kleefstra syndrome in Hungarian patients: additional symptoms besides the classic phenotype

    Get PDF
    BACKGROUND: Kleefstra syndrome is a rare genetic disorder, with core phenotypic features encompassing developmental delay/intellectual disability, characteristic facial features - brachy(micro)cephaly, unusual shaped eyebrows, flat face with hypertelorism, short nose with anteverted nostrils, thickened lower lip, carpmouth with macroglossia - and childhood hypotonia. Some additional symptoms are observed in different percentage of the patients. Epilepsy is common symptom as well. The underlying cause of the syndrome is a submicroscopic deletion in the chromosomal region 9q34.3 or disruption of the euchromatin histone methyl transferase 1. CASE PRESENTATION: We describe two Hungarian Kleefstra syndrome patients, one with the classic phenotype of the syndrome, the diagnosis was confirmed by subtelomeric FISH. Meanwhile in our second patient beside the classic phenotype a new symptom - abnormal antiepileptic drug metabolic response - could be observed. Subtelomere FISH confirmed the 9q34.3 terminal deletion. Because of the abnormal drug metabolism in our second patient, we performed array CGH analysis as well searching for other rearrangements. Array CGH analysis indicated a large - 1.211 Mb -, deletion only in the 9q subtelomeric region with breakpoints ch9:139,641,471-140,852,911. CONCLUSIONS: This is the first report on Kleefstra syndrome in patients describing a classical and a complex phenotype involving altered drug metabolism. KEYWORDS: 9q subtelomeric deletion syndrome; Drug metabolism; Epilepsy; Kleefstra syndrom
    corecore