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Abstract: Prostate cancer is the most commonly diagnosed cancer among men in the Western
world. Although localised disease can be effectively treated with established surgical and
radiopharmaceutical treatments options, the prognosis of castration-resistant advanced prostate
cancer is still disappointing. The objective of this study was to review the role of angiogenesis in
prostate cancer, and to investigate the effectiveness of anti-angiogenic therapies. A literature
search of clinical trials testing the efficacy of anti-angiogenic therapy in prostate cancer was
performed using Pubmed. Surrogate markers of angiogenic activity (microvessel density and
VEGEF-A expression) were found to be associated with tumour grade, metastasis, and prognosis.
Six randomised studies were included in this review, two phase II trials on localised and
hormone-sensitive disease (n=60 and 99 patients) and four phase III trials on castration-resistant
refractory disease (n=873 to 1224 patients). Although the phase II trials showed improved
relapse-free survival and stabilisation of the disease, the phase III trials found increased toxicity
and no significant improvement in overall survival. Although angiogenesis appears to have an
important role in prostate cancer, the results of anti-angiogenic therapy in castration-resistant
refractory disease have hitherto been disappointing. There are various possible explanations for
this lack of efficacy in castration-resistant refractory disease: redundancy of angiogenic pathways,
molecular heterogeneity of the disease, loss of tumour suppressor PTEN expression as well as
various VEGF-A splicing isoforms with pro- and anti-angiogenic activity. A better understanding
of the molecular mechanisms of angiogenesis may help to develop effective anti-angiogenic

therapy in prostate cancer.

Keywords: prostate cancer, angiogenesis, VEGF-A, splicing isoforms

1. Introduction

Prostate cancer is the most commonly diagnosed cancer in men in the Western world, with a
median age at diagnosis of 66 years [1]. There will be an estimated 160 000 new cases and 30 000
deaths in 2018 in the USA, representing 19% of all new cancer diagnoses and 9% of all cancer
related deaths, respectively [2]. In the United Kingdom, over 47 000 men are diagnosed with
prostate cancer every year, with over 330 000 men currently living with the disease [3]. The purpose
of this literature review is to assess whether angiogenesis is important in prostate cancer, and, if so,
whether anti-angiogenic therapies are effective in the treatment of prostate cancer. To begin with,
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the current treatment options in prostate cancer will be discussed, along with a summary of what is
already known in relation to angiogenesis in cancer. This will be followed by the literature review
on angiogenesis and anti-angiogenic therapies in prostate cancer specifically, and finally the
discussion will consider any treatment difficulties that have emerged in such studies.

2. Background
2.1. Prostate cancer

Prostate cancer is characterised by slow to moderate growth. Consequently, many cases are
indolent, and in up to 70% of incidentally diagnosed cases over 60 years death is due to an
unrelated cause [4]. The 5-year relative survival rate for men diagnosed in the USA between 2001
and 2007 with local or regional disease was 100%, whilst the rate for distant disease was 28.7% [5].
UK statistics show similar results: 5-year relative survival for prostate cancer was 100% in localised
disease and 30% in distant disease for patients diagnosed during 2002-2006 in the former Anglia
Cancer Network [6]. Most cases of prostate cancer are diagnosed by prostate specific antigen (PSA)
testing, or rarely by rectal examination. Prostate cancer can present with decreased urinary stream,
urgency, hesitancy, nocturia, or incomplete bladder emptying, but these symptoms are non-specific
and are infrequent at diagnosis [7].

2.2. Treatment options in prostate cancer

Prostate cancer staging is divided into four stages. Stage 1 and 2 cancers are localised to the
prostate whilst stage 3 cancers extend into the periprostatic tissue or the seminal vesicle, without
involvement of a nearby organ or lymph node and with no distant metastasis [8]. Stage 4 tumours
represent those that have spread to nearby or distant organs or lymph nodes [8].

Stage 1 tumours and stage 2 tumours of low and intermediate risk (Table 1.) can be followed
up by ‘watchful waiting’ or active surveillance and monitoring [9, 10]. Watchful waiting has no
curative intent, whilst active surveillance and monitoring defers treatment with curative intent to a
time when it is needed [9]. Therefore, in active surveillance and monitoring therapy is reserved for
tumour progression, with a 1-10% mortality rate [9].

Level of risk  pSA Gleason Clinical
level score stage
(ng/mL)
Low risk <10 and <6 and = T1-T2a
Intermediate  10-20 or 7 or T2b
risk
High risk >20 or 8-10 or >T2c

Table 1. Risk stratification of localised prostate cancer according to NICE guidance, UK [10].
Gleason score: histological pattern of the tumour. Stage T1-T2a: tumour involving <50% of one lobe.
Stage T2b: tumour involving 250% of one lobe. Stage T2c: tumour involving both lobes

Radical prostatectomy is a treatment option for localised tumours in patients with few
comorbidities. Although this provides an improvement in disease progression compared to active
surveillance and monitoring, it does not translate into a statistical difference in mortality: 10-year
cancer-specific survival rates were 98.8% with active surveillance and monitoring compared to 99%
with radical prostatectomy [9]. Complications of radical prostatectomy include the mortality and
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morbidity associated with major surgery and anaesthesia, penile shortening, impotence, urinary
and faecal incontinence, and inguinal hernia [8].

Radiation and radiopharmaceutical treatment options include external-beam radiation therapy
[EBRT], interstitial implantation of radioisotopes into the prostate and hormonal manipulation [9].
EBRT is used with curative intent in all stages of prostate cancer, with or without adjuvant
hormonal therapy. Interstitial implantation of radioisotopes is used in patient with stage 1 and 2
tumours. Short term results are similar to those seen with EBRT or radical prostatectomy, but the
maintenance of sexual potency is significantly higher (86-96%) when compared to radical
prostatectomy or EBRT (10-40% and 40-60%, respectively) [11].

Hormonal manipulation options include surgical castration (orchidectomy) or medical
castration (LH-RH antagonists) [12]. These may be used in stage 3 or 4 cancers and can be enhanced
by the addition of anti-androgenic therapy and adjuvant treatment with bisphosphonates [14].
Recently approved anti-androgen agents include abiraterone acetate, an inhibitor of cytochrome
P450c17, a critical enzyme in androgen synthesis and enzalutamide, a second generation
androgen-receptor-signaling inhibitor [13-15].

Treatment options for high stage metastatic hormone-refractory prostate cancer include active
cellular immunotherapy with sipuleucel-T. which has resulted in increased overall survival in
metastatic castration-resistant prostate cancer, in a double-blind, placebo-controlled, multicenter
phase 3 trial [16]. This lead to its approval for the treatment of asymptomatic or minimally
symptomatic patients with nonvisceral metastatic castration-resistant prostate cancer in 2010.
Radium-223 dichloride is used in symptomatic patients with bone metastases and no known
visceral metastases [17]. Cabazitaxel, a derivative of docetaxel, is approved as a second line
chemotherapy agent [18]. Further possible treatment options to prevent bone metastases include
denosumab (a monoclonal antibody that inhibits osteoclast function) [19] and bone-seeking
radionucleotides (strontium chloride Sr 89) [20].

Despite a widening arsenal of new treatment options, cure is rarely achieved in stage 4 prostate
cancer, although there is astriking difference in treatment response between individual patients
[21]. Such outcomes emphasize the need for research into further treatment options in
hormone-refractory advanced prostate cancer. One such emerging therapeutic option is inhibition
of tumour-related angiogenesis.

2.3. Angiogenesis in cancer

Angiogenesis is defined as the development of new vascular vessels from pre-existing blood
vessels. It has a critical role in wound healing and embryonic development, and also provides
collateral formation for improved organ perfusion in ischaemia [22]. It is a multi-step process
triggered by an angiogenic stimulus (Figure 1). The first step of the process is the production of
proteases which degrade the basement membrane. This is followed by migration and proliferation
of the endothelium, resulting in the formation of a new vascular channel [23].
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Figure 1. Angiogenesis in cancer. Hypoxia within the tumour induces the release of pro-angiogenic
factors and results in degradation of the basement membrane by matrix metalloproteinases (MMP).
The endothelial cells start to differentiate and proliferate, forming new blood vessels. The newly
formed blood vessels allow further tumour growth.

Although angiogenesis is not entirely necessary for tumour initialisation (some tumours of the
brain, lung and liver can grow along pre-existing vessels) [23], once a tumour reaches a size of more
than a few millimetres, formation of new blood vessels is necessary to provide an appropriate blood
supply to support tumour cell viability and proliferation. Hence, angiogenesis plays an important
role in tumour progression, and is now recognised as one of the hallmarks of cancer [24].

Angiogenesis is controlled by a delicate balance between angiogenesis inducers and
angiogenesis inhibitors. In a growing cancer there is a constant production of angiogenesis
inducers, including vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor
(bFGF, also known as FGF), angiogenin, tumour necrosis factor (TNF)-a, granulocyte
colony-stimulating factor [G-CSF], platelet-derived endothelial growth factor (PDGF), placental
growth factor (PGF), transforming growth factor (TGF)-«, TGF-p, interleukin-8 (IL-8), hepatocyte
growth factor (HGF), and epidermal growth factor (EGF) [22]. This constant production of
angiogenesis inducers results in increased activity of endothelial cells, as long as the production of
anti-angiogenic factors is correspondingly reduced [25]. Among the angiogenesis activators,
VEGF-A and bFGF are particularly important in tumour angiogenesis. The abundance and
redundant activities of different angiogenesis inducers may explain the resistance or suboptimal
effectiveness of anti-angiogenic therapies, when inhibitors acting only on a single angiogenesis
activator are being used [25].

Under normal conditions, angiogenesis inducers are balanced by naturally occurring
angiogenesis inhibitors, such as endostatin, angiostatin, IL-1, IL-12, interferons, metalloproteinase
inhibitors, and retinoic acid [25,26]. These inhibitors can either disrupt new vessel formation or can
help to remove already formed vascular channels. Shifting the balance towards angiogenesis
inhibition can interfere with important physiological roles of angiogenesis, such as in embryo
development, wound healing, and renal function. Interference with wound healing is a particularly
important concern in cancer treatment, for example resulting in delayed post-operative healing [27].
Another example involves the inhibition of VEGEF-A, resulting in vasoconstriction by means of
elevated NO production, consequently elevating blood pressure [28], and increasing the risk of
thrombogenesis, resulting in stroke or myocardial infarction. These factors can potentially limit the
use of angiogenesis inhibition in cancer, on account of their potential side effects.

2.4. Angiogenesis inhibition in cancer
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Although angiogenesis is an essential factor in tumour progression, by means of new vessel
formation, this also means that angiogenesis inhibition may only result in inhibition of further
tumour growth and may not actively eliminate the tumour. This, and the redundancy of the
numerous angiogenesis inducers as listed above, explain why the utilisation of angiogenesis
inhibitors as a monotherapy has not proved to be as effective as initially expected [29]. Hence,
angiogenesis inhibitor therapeutic regimes may require a combination of several anti-angiogenic
strategies or may need to be complemented by other non-angiogenesis related chemotherapeutic
agents in order to achieve an optimal therapeutic effect [30].

Based on the target of the therapeutic agent, angiogenesis inhibition can be divided into two
main groups: direct and indirect inhibition [31]. Direct inhibitors target growing endothelial cells,
whilst indirect inhibitors target the tumour cells or tumour-associated stromal cells. Small
molecular fragments (for example, arrestin, tumstatin, canstatin, endostatin, and angiostatin) are
the products of proteolytic degradation of the extracellular matrix, and act as direct inhibitors by
means of inhibition of the endothelial cell proliferation and migration induced by VEGF-A, bFGF,
PDGF, and interleukins [32]. The direct anti-angiogenic effect of targeting integrins (cellular
adhesion receptors), has also been demonstrated [32], and an integrin inhibitor, cilentigide, has
been shown to inhibit tumour cell invasion [33]. Unfortunately, even though cilentigide acts both
on tumour cells and endothelial cells and could be a prime example of multifactorial treatment,
results of clinical trials have proved disappointing so far [34].

The most extensively clinically used direct anti-angiogenic strategy targets VEGF-A or its
receptors. VEGF-A binds to its receptors to stimulate the proliferation of endothelial cells via the
RAS-RAF-MAPK (mitogen-activated protein kinase) signalling pathway [35]. Bevacizumab is a
humanised IgG1 monoclonal antibody against VEGF-A. It selectively binds to circulating VEGF-A,
preventing its interaction with its receptor, VEGF-receptor 2, expressed on the surface of
endothelial cells. Initial studies showed
clinical improvement when bevacizumab was used in combination with chemotherapy in a number
of cancers, without a marked increase in toxicity [36]. Subsequently it has been approved as part of
a combination therapy in the treatment of various cancers, including metastatic lung, colorectal,
and renal cell carcinoma, and as a single agent treatment in adult glioblastoma [37]. However,
subsequent studies have revealed adverse effects, including gastrointestinal perforation, nephrotic
syndrome, thromboembolism, surgical wound healing complications and hypertension [37,38].

In contrast, indirect angiogenesis inhibition involves an interplay between tumour or stromal
cells and angiogenesis. One example involves the inhibition of epidermal growth factor receptor
(EGFR), a tyrosine kinase receptor. Tumour cell expression and activation of EGFR induces
interleukin production, which is demonstrated to promote intratumoural angiogenesis. Thus,
blocking the expression and/or activity of EGFR can result in indirect inhibition of angiogenesis
[39].

To summarise, a number of anti-angiogenesis drugs have already been approved and are
currently used in cancer treatment. This prompts the question whether angiogenesis plays any role
in prostate cancer progression, and, if so, whether anti-angiogenic therapy would be effective in
refractory castration-resistant prostate cancer, for which the current treatment options are limited.

3. Results
3.1. Angiogenesis in prostate cancer

Currently there are no direct markers to assess angiogenic activity in prostate cancer, but it is
reasonable to assume that vascular density is an indicator of intratumoural angiogenic activity.
Microvessel density [MVD] is considered a good surrogate marker of angiogenic activity and has
been demonstrated as a prognostic factor in various tumours, including breast and colon cancers as
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well as malignant melanoma [40]. MVD can be assessed by histological examination of the
vasculature, either by assessing the most vascularised area of the tumour (‘hot spot’) or a random
representative area. Preliminary data suggested that MVD is associated with higher tumour grade
and stage, and worse outcome in prostate cancer [41,42]. Also, ultrasound imaging studies of
haemodynamic indices have shown a higher peak intensity in high-grade tumours [43]. Later
studies, however have failed to confirm that MVD is an independent prognostic factor in untreated
tumours, and no correlation has yet been established between MVD and effectiveness of
anti-angiogenic treatment in prostate cancer [44]. Reasons for these conflicting results potentially
include different counting methods, diferences in antibodies used, different population sizes,
personal experience and pathological background [45]. A further limiting factor is the complex
geometrical structure of the newly fromed vascular system, which is difficult to analyse on a two
dimensional histological section [46]. Fractal geometry to estimate the surface dimension, computer
aided automated image analysis, 3D models or magnetic resonance imaging could potentially be
used to overcome these shortcomings, [46,47].

Another possible surrogate marker for tumour angiogenesis is by an assessment of the level of
angiogenic regulators in the tumour. Both physiological and pathological angiogenesis is
predominantly regulated by VEGF, which has various protein isoforms, each acting on their
specific tyrosine kinase receptor at the cell surface [48]. Among the VEGF isoforms, VEGE-A has
been extensively studied, and it has been demonstrated to play an important role in prostate cancer
angiogenesis [49]. In addition, VEGF-A has been found to be overexpressed in prostate cancer, and
a high level of VEGF-A is associated with distant metastasis and a poorer prognosis [50-52].
Furthermore, in prostate cancer a high-level VEGF-A expression has been found not only in
endothelial cells, but also in tumour cells [53].

These findings suggest that angiogenesis is important in prostate cancer, prompting
subsequent clinical studies to assess whether anti-angiogenesis therapy is effective in the treatment
of prostate cancer.

3.2. Anti-angiogenesis clinical studies in prostate cancer

An unfiltered Pubmed search for the keywords “angiogenesis” and “prostate” revealed a
steady increase in published papers between 2000 and 2013 (from 70 per year in 2000 to 213 per
year in 2013) followed by a slow decline (down to 115 in 2018). This appears to reflect the fact that,
despite the promising findings of initial studies, suggesting an important role of angiogenesis in
prostate cancer, phase III clinical trials, mainly conducted after 2010, have proved disappointing so
far.

Since VEGF-A was demonstrated to be overexpressed in prostate cancer and associated with
poor prognosis and metastasis, most anti-angiogenic clinical studies in prostate cancer have
targeted VEGF-A. A randomised phase II trial on bevacizumab involving 99 patients with
hormone-sensitive prostate cancer showed improved relapse-free survival when bevacizumab was
used alongside hormone-deprivation therapy (Table 2) [54]. A randomized, double-blind,
placebo-controlled phase III clinical study of 1050 patients with prostate cancer showed some
improvement in progression-free survival, but found no significant improvement in overall
survival in metastatic, castration-resistant prostate cancer, when bevacizumab was used together
with docetaxel chemotherapy and prednisone hormonal therapy [55]. Furthermore, bevacizumab
resulted in increased toxicity and a greater incidence of treatment-related deaths [55]. This suggests
that bevacizumab has some positive effect, especially on hormone-sensitive recurrent prostate
cancer, but in hormone-resistant refractory tumours, in which the conventional treatment options
are particularly prone to failure, adding bevacizumab treatment does not have any clinical benefit
(Table 2).
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Aflibercept (a hybrid protein composed of various domains of VEGF-receptors 1 and 2, fused
to human immunoglobulin G1) also targets the VEGF-A pathway, by acting as a decoy receptor for
VEGEF-A. Unfortunately, similar to bevacizumab, in a phase III multicentre, randomised
double-blind placebo-controlled parallel group study in 1224 men with castration-resistant
refractory tumours, aflibercept therapy combined with docetaxel chemotherapy and hormonal
therapy did not show any improvement in overall survival [56].

Sunitinib and cediranib are small multireceptor molecule tyrosine kinase inhibitors, with a
demonstrated activity against VEGF-receptors 1 and 2. Sunitininb is approved for the treatment of
gastrointestinal stromal tumour, renal cell carcinoma and pancreatic neuroendocrine tumours.
However, in a randomised, placebo-controlled, phase III trial of sunitinib therapy combined with
hormonal therapy in 873 patients with refractory castration-resistant prostate cancer, there was no
improvement in overall survival compared to placebo [57].

Furthermore, these anti-VEGF-A therapies have been associated with an increased rate of
toxicity and adverse effects, resulting in discontinuation of treatment (27% vs 7%) [57]. These toxic
and adverse effects included fatigue, asthenia, hand-foot syndrome, hypertension, bowel
perforation, pulmonary thromboembolism, and gastrointestinal bleeding, seen in both pre-clinical
and clinical studies [58, 59]. In addition, treatment-related haematological problems also emerged in
up to 20% of the patients, including lymphopenia, neutropenia, and anaemia [57].

Thalidomide is an immune-modulatory drug, which also has anti-angiogenic effects.
Lenalidomide is a more potent analogue of thalidomide, with less prominent side effects. The
mechanism of the anti-angiogenic effect of lenalidomide is not entirely elucidated, but appears to be
through multiple mechanisms, including inhibition of VEGF-induced
phosphatidylinositol-3,4,5-trisphosphate (PI3K)-Akt pathway signalling [60]. Lenalidomide therapy
in non-metastatic prostate cancer in a phase I/Il double-blinded, randomized study of 60 patients
resulted in stabilisation of the disease and a decline in PSA, with minimal toxicity [61]. A
randomised, double-blind, placebo-controlled phase III trial in 1059 patients with
castration-resistant refractory prostate cancer, however showed worse overall survival when
lenalidomide was added to prednisone, hormonal, and docetaxel chemotherapy, compared to the
placebo group [62]. There was also a 25% increase in adverse events, which included
haematological side effects (34% vs 20%), diarrhoea (7% vs 2%), pulmonary embolism (6% vs 1%),
and asthenia (5% vs 3%) [62].

Drug Mechanism of Phase of Number Outcome
action the of
clinical patients
trial
Bevacizumab Recombinant I 99 Improved
humanized relapse-free
monoclonal survival [54]
antibody that
blocks VEGF-A I 1050 No
improvement
in overall

survival [55]

Aflibercept Binds to circulating il 1224 No
VEGF-A improvement
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in overall
survival [56]

Sunitinib Receptor tyrosine it 873 No
kinase inhibitor improvement
in overall

survival [57]

Lenalidomide Multiple /i 60 Disease
mechanisms, stabilisation,
including inhibition decrease in
of VEGF-induced PSA [61]
PI3BK-Akt pathway
signalling 1II 1059 Worse overall

survival [62]
Table 2. Anti- studies in treatment of prostate cancer

To summarise, these findings suggest that anti-angiogenic therapy has no clinical benefit when
added to chemotherapy or hormonal therapy in refractory, castration-resistant prostate cancer.

4. Discussion

Clinical trials which showed an association between high VEGF-A expression and tumour
progression assessed VEGF-A protein levels by immunohistochemistry, ELISA methods or mRNA
levels by reverse-transcription-polymerase chain reaction (RT-PCR). Despite high VEGF-A
expression in advanced prostate cancer using these methods, anti-angiogenic therapies targeting
the VEGF-A pathway have failed to provide significant treatment benefits [63,64]. There are various
possible explanations for resistance to anti-angiogenic therapy in prostate cancer. Redundancy of
angiogenic pathways means that targeting a single pathway may result in upregulation of
alternative pathways. For example, with long-term bevacizumab treatment, which blocks VEGEF-A,
there is upregulation of EGF, HGF and PDGF [65]. Lindholm et al demonstrated in breast cancer
xenografts that targeting these pathways can be effective in anti-angiogenic therapy [66]. A
combination of different anti-angiogenic therapies in prostate cancer has also showed some
promising results: a phase II study of combined bevacizumab and lenalidomide therapy, added to
docetaxel and prednisone chemotherapy and hormonal therapy in 63 patients with metastatic
castration-resistant prostate cancer found that combined anti-angiogenic therapy can be safely
administered, but further randomised trials are required to confirm clinical benefit [67].

Another reason for treatment resistance is due to the fact that prostate cancer is a molecularly
heterogeneous disease, and there is currently a lack of biomarkers that can help select those patients
who are likely to benefit from anti-angiogenic therapy or that can assess response to anti-angiogenic
treatment [48]. The genetic signature of the VEGF-A pathway or variations in VEGF-A or its
receptors could be possible markers to predict therapy response, but these have as yet not been
validated [68,69]. It is hoped that further stage III trials will be able to identify subgroups of patients
who could benefit from anti-angiogenic treatment.

Resistance to sunitinib tyrosine-kinase-inhibitor has been shown to be associated with loss of
the tumour suppressor protein phosphatase and tensin homolog [PTEN]. PTEN is a gatekeeper
protein that negatively regulates intracellular levels of PI3K and consequently suppresses the
PI3K-Akt pathway, which normally promotes cell survival and growth [70]. Reinstating PTEN
activity, by suppression of the PI3K-Akt pathway in in vitro studies, has been shown to restore
sensitivity to sunitinib in cancer cells [70]. Loss of PTEN activity is considered a key event in
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prostate carcinogenesis, and reinstating PTEN activity in prostate cancer seems to be a promising
tool in overcoming sunitinib resistance. In addition, activation of the PI3K-Akt pathway in tumours
with PTEN deletion has been shown to be associated with repressed androgen signalling in prostate
cancer, while suppression of the PI3K-Akt pathway was demonstrated to activate androgen
receptor signalling [71,72]. In a similar way, suppression of the androgen signaling pathway
resulted in activation of the PI3K-Akt pathway [71]. This suggests that there is a cross-talk between
the androgen receptor and PI3K-Akt pathways, which would at least in part explain the
castration-resistant phenotype observed in tumours with PTEN deletion. Since activation of the
PI3-Akt pathway appears to play an important role in resistance to both sunatininb and
anti-androgenic therapy, suppression of the PI3K-Akt pathway could help overcome difficulties in
anti-angiogenic and anti-androgenic therapy. Recent preclinical studies on mouse models have
shown that targeted inhibition of the PI3K-Akt pathway in castration-resistant prostate cancer
resulted in both inhibited cancer cell proliferation and MVD [73,74]. Suboptimal results with
bevacizumab treatment may also relate to the interaction between the androgen receptor (AR)
signalling and angiogenic pathways. It has been long established that androgens upregulate
VEGE-A expression [75], although the mechanism of this is not entirely understood [76]. Most
recently, an interaction between epigenetic factors (Lysine specific demethylase 1 (LSD1), protein
arginine methyltransferase 5 (PRMT5)) [77,78], zinc-finger transcription factors (specificity protein 1
(Sp1), Wilms tumor gene 1 (WT1) early growth factor 1 (EGR1)) [76,79], different AR splice variants
[80] and hypoxia mediated by the hypoxia-inducable factor 1 o (HIF-1at) [81] have emerged as
potential mechanisms for androgen-dependent VEGF-A regulation. Furthermore, AR has been
shown to regulate EGFR expression in prostate cancer cells. [82, 83] In addition to the role of EGFR
in indirect angiogenesis promotion through interleukin production, [39] it has also been
demonstrated to upregulate VEGF-A directly and through induction of HIF-1a. [84, 85] (Figure 2)

The interaction and the importance of angiogenesis and hormonal therapy in tumour
progression have initiated a clinical trial implementing dual targeting of angiogenesis and
androgen signalling in hormone-sensitive tumours [54]. As discussed above, this phase II clinical
trial , which combined short-course androgen deprivation therapy with bevacizumab, improved
relapse free survival in recurrent, hormone-sensitive tumours.

by

¥

Recently, dual targeting of HIF-1la and AR pathways by HIF-1a inhibitors and enzalutamide, a
second generation AR inhibitor, showed synergistic effect in castration-resistant prostate cancer cell
lines, also resulting in decreased VEGF-A levels [81]. In addition, suppression of Sp1 binding to
VEGE-A promoter resulted in significant reduction of VEGF-A level in castration-resistant prostate
cancer cells [79]. However, a better understanding of the mechanism of the interaction between
VEGEF-A and AR is still needed to identify those patients who may benefit from dual targeting
therapy. [79, 90]
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Figure 2. Interaction between angiogenic and androgen receptor pathways in prostate cancer cells.
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transcriptional activity of AR at low androgen levels, as seen in castration-resistant prostate
cancer. The activated androgen receptor promotes the overexpression of VEGF-A through HIF-1x
and Spl related mechanisms and also via regulation of EGFR expression and upregulation of

cytokins, mainly interleukin (IL) - 6. [90]

Targeting VEGF-A also raises a further question: does inhibition of VEGF-A result in a pure
anti-angiogenetic effect? Interestingly, it has been shown that VEGF-A has different splice isoforms,
and these different isoforms can show pro- or anti-angiogenic functions. [91] In the terminal exon of
the VEGF-A gene, there are two alternative splice sites. Splicing at the proximal splice site results in
the canonical angiogenic VEGFiesa isoform. Splicing at the distal splice site results in an alternative
splicing isoform VEGFieb, which has been found to have anti-angiogenic effect by inhibiting
vasodilation and reducing permeability [92, 93]. The level of the anti-angiogenic VEGFissb» splice
variant has also been found to be decreased in cancer cells, compared to normal tissue cells. [93]
This means that, in cancer cells, there appears to be a shift towards the pro-angiogenic VEGFissa
splice variant at the expense of the anti-angiogenic VEGFiesb splice variant. The cause of this shift
has not been entirely elucidated, but nuclear receptor-coregulator complexes have been shown to
regulate splicing events, therefore aberrant recruitment of nuclear receptor-coregulator complexes
to the VEGF promoter to promote VEGFissa splicing has been suggested as a possible explanation
[48,94]. Current anti-VEGEF-A therapies lack isoform specificity, as the epitope of bevacizumab
binds the N-terminal region of VEGF-A, which is present in all splice isoforms [95]. Thus, current
anti-angiogenic therapies targeting VEGF-A function may result in both inhibition and promotion
of tumour angiogenesis. However, the fact that the two isoforms appear to have different splice
sites and post-translational regulation, offers the possibility of selectively targeting specific
isoforms. Serine-arginine protein kinase 1 (SRPK1), a kinase that phosphorylates SR-protein,
appears to stimulate VEGFussa splicing, whilst VEGFesb splicing has been shown to be stimulated by
Clk1/4, a dual specific protein kinase [96-98]. Investigation with SRPK1 knocked-down cell lines
showed a shift towards the anti-angiogenic VEGFissb» isoform, while xenografts showed decreased
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tumour growth and decreased MVD in tumours [99]. In addition, specific inhibition of SRPK1 in a
mouse tumour model has been shown to be associated with reduced tumour growth [100]. (Figure
3)

SRPK1 clk1/4

4 v

VEGF-A pre-mRNA pss DSS
sem a2 3 e s e le o n oo = (S

VEGF 65 “ VEGF g5, \
- T —
— s —

pro-angiogenic anti-angiogenic

Figure 3. Alternative splicing of VEGF-A. Splicing at the proximal splicing site (PSS) is stimulated
by SRPK1 and results in the pro-angiogenic VEGFiss splice variant. Clk1/4 stimulates splicing at the
distal splicing site (DSS), which results in the anti-angiogenic VEGFiesb isoform.

Most current mainstream anti-angiogenic treatment therapies focus on direct angiogenesis
inhibition. A further possible treatment option is indirect inhibition of angiogenesis, targeting an
interplay between tumour or stromal cells and angiogenesis. The galectin family of proteins have
emerged as playing an important role in this interplay, facilitating tumour progression. Galectins
are (-galactoside-binding lectin proteins, which are overexpressed in various cancers and have
been associated with poor prognosis and tumour progression in prostate cancer [101]. In addition to
their intracellular function of promoting cell transformation and survival, galectins are also secreted
into the extracellular space. Here they interact with cell surface receptors, resulting in suppression
of the immune response and promotion of angiogenesis, likely by means of interaction with
VEGEF-receptor2 [102,103]. Rabinovich and colleagues identified that prostate cancer shows a
unique galectin expression profile during cancer progression, and showed that galectin-1 is
uniquely expressed at high levels in advanced prostate cancer [104]. This makes galectin-1 a
potential target of angiogenesis therapy in advanced prostate cancer [105].

5. Materials and Methods

The literature review was conducted by a Pubmed literature search engine using a collection of
keywords with no restriction on publication date. The following word strings were used as
keywords: “angiogenesis”[All Fields]] AND [“prostatic neoplasms”[MeSH Terms] OR
[“prostatic”[All Fields] AND “neoplasms”[All Fields]] OR “prostatic neoplasms”[All Fields] OR
[“prostate”[All Fields] AND “cancer”[All Fields]] OR “prostate cancer”[All Fields]. The search
results were subsequently filtered by article type, specifically clinical trials and review articles.
Abstracts were assessed for relevance with subsequent review of full text versions. Only phase II or
III studies were included. Studies cited by these articles, but not included in the algorithm, were
also manually scoped and were also subject of the review.

6. Conclusions
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The association of MVD and overexpression of VEGF-A with tumour prognosis in prostate
cancer suggested that angiogenesis has an important role in prostate cancer progression.
Supplementation of hormonal manipulation and chemotherapy with anti-angiogenesis therapy in
hormone-sensitive prostate cancer showed some positive effect, further supporting the hypothesis
that angiogenesis is an important factor in prostate cancer. Despite this, clinical trials in refractory
castration-resistant prostate cancer hitherto have shown increased toxicity with no clinical benefit.
A better understanding of the mechanism of angiogenesis may help to understand the failure of
trials, possibly leading to targeted anti-angiogenic therapies in prostate cancer. These could include
identification of specific subgroups of patients who might benefit from therapies, targeting
tumour-suppressor genes that play a role in treatment resistance, or by identifying and selectively
targeting splice variants of VEGF-A.
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