21 research outputs found

    A Review of the Preclinical and Clinical Efficacy of Remdesivir, Hydroxychloroquine, and Lopinavir-Ritonavir Treatments against COVID-19

    Get PDF
    In December of 2019, an outbreak of a novel coronavirus flared in Wuhan, the capital city of the Hubei Province, China. The pathogen has been identified as a novel enveloped RNA beta-coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus SARS-CoV-2 is associated with a disease characterized by severe atypical pneumonia known as coronavirus 2019 (COVID-19). Typical symptoms of this disease include cough, fever, malaise, shortness of breath, gastrointestinal symptoms, anosmia, and, in severe cases, pneumonia.1 The high-risk group of COVID-19 patients includes people over the age of 60 years as well as people with existing cardiovascular disease and/or diabetes mellitus. Epidemiological investigations have suggested that the outbreak was associated with a live animal market in Wuhan. Within the first few months of the outbreak, cases were growing exponentially all over the world. The unabated spread of this deadly and highly infectious virus is a health emergency for all nations in the world and has led to the World Health Organization (WHO) declaring a pandemic on March 11, 2020. In this report, we consolidate and review the available clinically and preclinically relevant results emanating from in vitro animal models and clinical studies of drugs approved for emergency use as a treatment for COVID-19, including remdesivir, hydroxychloroquine, and lopinavir-ritonavir combinations. These compounds have been frequently touted as top candidates to treat COVID-19, but recent clinical reports suggest mixed outcomes on their efficacies within the current clinical protocol frameworks

    Tumor growth suppression induced by biomimetic silk fibroin hydrogels

    Get PDF
    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) project grants OsteoCart (PTDC/CTM-BPC/115977/2009) and Tissue2Tissue (PTDC/CTM/105703/2008) which supported this study. Research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS. Le-Ping Yan was awarded a PhD scholarship from FCT (SFRH/BD/64717/2009). We also would like to thank FCT for the distinction attributed to J.M. Oliveira under the Investigador FCT program (IF/00423/2012). The authors also like to acknowledge Dr. Mariana B. Oliveira for technical assistance on the dynamic mechanical analysis of the cell-laden hydrogels

    Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters

    No full text
    Metabolic adaptations and changes in the expression of nutrient transporters are known to accompany tumorigenic processes. Nevertheless, in the context of solid tumors, studies of metabolism are hindered by a paucity of tools allowing the identification of cell surface transporters on individual cells. Here, we developed a method for the dissociation of human breast cancer tumor xenografts combined with quantification of cell surface markers, including metabolite transporters. The expression profiles of four relevant nutrient transporters for cancer cells' metabolism, Glut1, ASCT2, PiT1 and PiT2 (participating to glucose, glutamine and inorganic phosphate, respectively), as detected by new retroviral envelope glycoprotein-derived ligands, were distinctive of each tumor, unveiling underlying differences in metabolic pathways. Our tumor dissociation procedure and nutrient transporter profiling technology provides opportunities for future basic research, clinical diagnosis, prognosis and evaluation of therapeutic responses, as well as for drug discovery and development.Laboratory Investigation advance online publication, 4 March 2013; doi:10.1038/labinvest.2013.44
    corecore