5,931 research outputs found

    Steady-State Two Atom Entanglement in a Pumped Cavity

    Full text link
    In this paper we explore the possibility of a steady-state entanglement of two two-level atoms inside a pumped cavity by taking into account cavity leakage and the spontaneous emission of photons by the atoms. We describe the system in the dressed state picture in which the coherence is built into the dressed states while transitions between the dressed states are incoherent. Our model assumes the vacuum Rabi splitting of the dressed states to be much larger than any of the decay parameters of the system which allows atom-field coherence to build up before any decay process takes over. We show that, under our model, a pumping field cannot entangle two closed two-level atoms inside the cavity in the steady-state, but a steady-state entanglement can be achieved with two open two-level atoms.Comment: 19 pages, 5 figure

    The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities

    Get PDF
    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice

    Loss prevention for hog farmers: Insurance, on-farm biosecurity practices, and vaccination

    Get PDF
    Using agricultural household survey data and claim records from insurers for the year 2009, this paper analyzes hog producers' choice of means of loss prevention and identifies the relationships among biosecurity practices, vaccination, and hog insurance. By combining one probit and two structural equations, we adopt three-stage estimations on a mixed-process model to obtain the results. The findings indicate that biosecurity practices provide the basic infrastructure for operating pig farms and complement both the usage of quality vaccines and the uptake of hog insurance. In addition, there is a strong relationship of substitution between quality of vaccine and demand for hog insurance. Hog farmers that implement better biosecurity practices are more likely to seek high-quality vaccines or buy into hog insurance schemes but not both. For those households with hog insurance, better biosecurity status, better management practices, and higher-quality vaccine significantly help to reduce loss ratios. However, we also find a moral hazard effect in that higher premium expenditure by the insured households might induce larger loss ratios.Biosecurity, hog insurance, loss prevention, vaccine,

    Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties

    Get PDF
    Hip hemiarthroplasty is a common treatment for femoral neck fracture. However, the acetabular cartilage may degenerate after hemiarthroplasty leading to postoperative failure and the need for revision surgery. The clearance between the acetabular cartilage and head of the prosthesis is one of the potential reasons for this failure. In this study, the influence of joint clearance on the biomechanical function of a generic hip model in hemiarthroplasty was investigated using biphasic numerical simulation. Both a prolonged loading period of 4000 s and dynamic gait load of 10 cycles were considered. It was found that a larger clearance led to a higher stress level, a faster reduction in load supported by the fluid and a faster cartilage consolidation process. Additionally, the mechanical performance of the acetabular cartilage in the natural model was similar to that in the hemiarthroplasty model with no clearance but different from the hemiarthroplasty models with clearances of 0.5mm and larger. The results demonstrated that a larger clearance in hip hemiarthroplasty is more harmful to the acetabular cartilage and prosthesis heads with more available dimensions (i.e. smaller increments in diameter) could be manufactured for surgeons to achieve a lower clearance, and reduced contact stress in hemiarthroplasty surgeries

    Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles

    Get PDF
    Representation of realistic muscle geometries is needed for systematic biomechanical simulation of musculoskeletal systems. Most of the previous musculoskeletal models are based on multibody dynamics simulation with muscles simplified as one-dimensional (1D) line-segments without accounting for the large muscle attachment areas, spatial fibre alignment within muscles and contact and wrapping between muscles and surrounding tissues. In previous musculoskeletal models with three-dimensional (3D) muscles, contractions of muscles were among the inputs rather than calculated, which hampers the predictive capability of these models. To address these issues, a finite element musculoskeletal model with the ability to predict contractions of 3D muscles was developed. Muscles with realistic 3D geometry, spatial muscle fibre alignment and muscle-muscle and muscle-bone interactions were accounted for. Active contractile stresses of the 3D muscles were determined through an efficient optimization approach based on the measured kinematics of the lower extremity and ground force during gait. This model also provided stresses and strains of muscles and contact mechanics of the muscle-muscle and muscle-bone interactions. The total contact force of the knee predicted by the model corresponded well to the in vivo measurement. Contact and wrapping between muscles and surrounding tissues were evident, demonstrating the need to consider 3D contact models of muscles. This modelling framework serves as the methodological basis for developing musculoskeletal modelling systems in finite element method incorporating 3D deformable contact models of muscles, joints, ligaments and bones

    Biphasic investigation of contact mechanics in natural human hips during activities

    Get PDF
    The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities

    5-Benzyl­idene-2,3-diphenyl-1,2-selenaphosphole-2-selenide

    Get PDF
    The title compound, C23H19PSe2, has a central five-membered twist C3PSe ring conformation. One phenyl ring substituent, attached to an sp 2 carbon, is approximately coplanar with the C3PSe ring whilst the other organic substituents, attached to an sp 3-carbon and a PV atom, lie on the same side of the ring

    The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation

    Full text link
    Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \textbf{D 78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that the pressure under HDL approximation is generally smaller than the perturbative result. In addition, we also calculate the quark number susceptibility (QNS) at finite temperature and finite chemical potential under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results with the corresponding ones in the previous literature.Comment: 12 pages, 3 figure
    corecore