978 research outputs found

    Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISRCTN70707830]

    Get PDF
    BACKGROUND: Fibromyalgia syndrome displays sympathetically maintained pain features such as frequent post-traumatic onset and stimuli-independent pain accompanied by allodynia and paresthesias. Heart rate variability studies showed that fibromyalgia patients have changes consistent with ongoing sympathetic hyperactivity. Norepinephrine-evoked pain test is used to assess sympathetically maintained pain syndromes. Our objective was to define if fibromyalgia patients have norepinephrine-evoked pain. METHODS: Prospective double blind controlled study. Participants: Twenty FM patients, and two age/sex matched control groups; 20 rheumatoid arthritis patients and 20 healthy controls. Ten micrograms of norepinephrine diluted in 0.1 ml of saline solution were injected in a forearm. The contrasting substance, 0.1 ml of saline solution alone, was injected in the opposite forearm. Maximum local pain elicited during the 5 minutes post-injection was graded on a visual analog scale (VAS). Norepinephrine-evoked pain was diagnosed when norepinephrine injection induced greater pain than placebo injection. Intensity of norepinephrine-evoked pain was calculated as the difference between norepinephrine minus placebo-induced VAS scores. RESULTS: Norepinephrine-evoked pain was seen in 80 % of FM patients (95% confidence intervals 56.3 – 94.3%), in 30 % of rheumatoid arthritis patients and in 30 % of healthy controls (95% confidence intervals 11.9 – 54.3) (p < 0.05). Intensity of norepinephrine-evoked pain was greater in FM patients (mean Β± SD 2.5 Β± 2.5) when compared to rheumatoid arthritis patients (0.3 Β± 0.7), and healthy controls (0.3 Β± 0.8) p < 0.0001. CONCLUSIONS: Fibromyalgia patients have norepinephrine-evoked pain. This finding supports the hypothesis that fibromyalgia may be a sympathetically maintained pain syndrome

    Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

    Get PDF
    Overview: Cardiovascular disease remains a leading cause of death worldwide, with vulnerable plaque rupture the underlying cause of many heart attacks and strokes. Much research is focused on identifying an imaging biomarker to differentiate stable and vulnerable plaque. Magnetic Resonance Imaging (MRI) is a non-ionising and non-invasive imaging modality with excellent soft tissue contrast. However, MRI has relatively low sensitivity (micromolar) for contrast agent detection compared to nuclear imaging techniques. There is also an increasing emphasis on developing MRI probes that are not based on gadolinium chelates because of increasing concerns over associated systemic toxicity and deposits1. To address the sensitivity and safety concerns of gadolinium this project focused on the development of a high relaxivity probe based on superparamagnetic iron oxide nanoparticles for the imaging of atherosclerotic plaque with MRI. With development, this may facilitate differentiating stable and vulnerable plaque in vivo. Aim: To develop a range of MRI contrast agents based on superparamagnetic iron oxide nanoparticles (SPIONs), and test them in a murine model of advanced atherosclerosis. Methods: Nanoparticles of four core sizes were synthesised by thermal decomposition and coated with poly(maleicanhydride-alt-1-octadecene) (PMAO), poly(ethyleneimine) (PEI) or alendronate, then characterised for core size, hydrodynamic size, surface potential and relaxivity. On the basis of these results, one candidate was selected for further studies. In vivo studies using 10 nm PMAO-coated SPIONs were performed in ApoE -/- mice fed a western diet and instrumented with a perivascular cuff on the left carotid artery. Control ApoE -/- mice were fed a normal chow diet and were not instrumented. Mice were scanned on a 3T MR scanner (Philips Achieva) with the novel SPION contrast agent, and an elastin-targeted gadolinium agent that was shown previously to enable visualisation of plaque burden. Histological analysis was undertaken to confirm imaging findings through staining for macrophages, CX3CL1, elastin, tropoelastin, and iron. Results: The lead SPION agent consisted of a 10 nm iron oxide core with poly(maleicanhydride-alt-1-octadecene), (-36.21 mV, r2 18.806 mmol-1/s-1). The irregular faceting of the iron oxide core resulted in high relaxivity and the PMAO provided a foundation for further functionalisation on surface -COOH groups. The properties of the contrast agent, including the negative surface charge and hydrodynamic size, were designed to maximise circulation time and evade rapid clearance through the renal system or phagocytosis. In vitro testing showed that the SPION agent was non-toxic. In vivo results show that the novel contrast agent accumulates in similar vascular regions to a gadolinium-based contrast agent (Gd-ESMA) targeted to elastin, which accumulates in plaque. There was a significant difference in SPION signal between the instrumented and the contralateral non-instrumented vessels in diseased mice (p = 0.0411, student's t-test), and between the instrumented diseased vessel and control vessels (p = 0.0043, 0.0022, student's t-test). There was no significant difference between the uptake of either contrast agent between stable and vulnerable plaques (p = 0.3225, student's t-test). Histological verification was used to identify plaques, and Berlin Blue staining confirmed the presence of nanoparticle deposits within vulnerable plaques and co-localisation with macrophages. Conclusion: This work presents a new MRI contrast agent for atherosclerosis which uses an under-explored surface ligand, demonstrating promising properties for in vivo behaviour, is still in circulation 24 hours post-injection with limited liver uptake, and shows good accumulation in a murine plaque model

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Gastric Juvenile Polyposis with High-Grade Dysplasia in Pachydermoperiostosis

    Get PDF
    Pachydermoperiostosis (PDP) is the primary form of hypertrophic osteoarthropathy. It is a very rare disease consisting of pachydermia, digital clubbing and radiologic periostosis. Various digestive symptoms in PDP are seen in 11–49% of patients and juvenile polyps may be found at gastric endoscopy. We report here the history of a patient with PDP who was referred for assessment of severe anemia. Endoscopy of the upper digestive tract showed multiple polyps of the stomach with two huge lesions exhibiting foci of high-grade dysplasia. This observation suggests that PDP can be considered as a precancerous condition of the stomach and systematic screening using endoscopy should be considered in these patients

    Predominance of null mutations in ataxia-telangiectasia

    Get PDF
    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition. The responsible gene, ATM, was recently identified by positional cloning and found to encode a putative 350 kDa protein with a PI 3-kinase-like domain, presumably involved in mediating cell cycle arrest in response to radiation-induced DNA damage. The nature and location of A-T mutations should provide insight into the function of the ATM protein and the molecular basis of this pleiotropic disease. Of 44 A-T mutations identified by us to date, 39 (89%) are expected to inactivate the ATM protein by truncating it, by abolishing correct initiation or termination of translation, or by deleting large segments. Additional mutations are four smaller in-frame deletions and insertions, and one substitution of a highly conserved amino acid at the PI 3-kinase domain. The emerging profile of mutations causing A-T is thus dominated by those expected to completely inactivate the ATM protein. ATM mutations with milder effects may result in phenotypes related, but not identical, to A-T

    Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift

    Get PDF
    The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX) genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid evolution potentially reflecting a central role for ubiquitylation in driving plant fitness

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0β†’D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Ξ₯(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0β†’D*+D*- with an estimated background of 6.2Β±0.5 events. From these events, we determine the branching fraction to be B(B0β†’D*+D*-)=[8.3Β±1.6(stat)Β±1.2(syst)]Γ—10-4. The measured CP-odd fraction of the final state is 0.22Β±0.18(stat)Β±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    • …
    corecore