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throughout Norwegian waters. Our results showed 
that the two largest study species, spotted wolffish 
(Anarhichas minor) and cusk (Brosme brosme), dis-
play the strongest negative temperature-size response. 
We also observed smaller maximum body lengths 
for multiple species within the coldest extent of their 
temperature range, as well as parabolic relationships 
between maximum length and temperature for Atlan-
tic wolffish (Anarhichas lupus) and beaked redfish 
(Sebastes mentella). The smaller maximum body 
lengths for high latitude species at both warm and 
cold temperature extremes of species’ thermal ranges 
corroborate the temperature-size mechanisms of the 
gill-oxygen limitation theory (GOLT), whereby spon-
taneous protein denaturation limits growth at both 
warm and cold temperatures.

Keywords  Temperature-size response · Gill-oxygen 
limitation theory (GOLT) · Cold denaturation · Ocean 
warming · Maximum body length · Generalised 
additive models (GAMs)

Introduction

Since the start of the twentieth century, mean global 
temperatures have increased approximately by 1.1 °C 
concurrently with increasing anthropogenic green-
house gas emissions (IPCC 2021). In parallel, the 
geographic extent of low oxygen areas in global 
oceans has been expanding, whilst upper layer oxygen 

Abstract  As the majority of marine organisms are 
water-breathing ectotherms, temperature and dis-
solved oxygen are key environmental variables that 
influence their fitness and geographic distribution. 
In line with the temperature-size rule (TSR), marine 
ectotherms in warmer temperatures will grow to a 
smaller maximum body size, yet the extent to which 
different species experience this temperature-size 
response varies. Here, we analysed the maximum 
body length of ten teleost fish species in line with 
temperature, dissolved oxygen concentration and geo-
graphic location (that encompasses multiple latent 
variables), across a broad (26°) latitudinal gradient 
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levels have decreased, likely by 0.5–3.3% at surface 
and sub-surface layers throughout the past 50  years 
(Schmidtko et  al. 2017; Breitburg et  al. 2018; Bind-
off et  al. 2019). As the majority of marine species 
are water-breathing ectotherms, such environmental 
changes may present deleterious impacts on individ-
ual fitness.

In general, the response of marine water-breath-
ing ectotherms to ocean warming and deoxygena-
tion includes shifts in their geographic distribution 
to track their thermal affinities (Poloczanska et  al. 
2016). This may result from the complex interaction 
of temperature and dissolved oxygen concentration 
in sea water, as oxygen demands of water-breathing 
ectotherms increase, whilst the availability of dis-
solved oxygen may decrease with warming, enhanced 
ocean stratification and the accelerated respiration of 
dissolved organic matter (Oschlies et  al. 2018). It is 
also suggested that a response to warming and deoxy-
genation includes the reduction of body size (Gardner 
et al. 2011).

Across an ectothermic species’ geographical 
range, intraspecific clines in body size are apparent 
along latitudinal gradients, whereby individuals are 
generally smaller in warmer conditions (Horne et al. 
2015). According to the temperature-size rule (TSR), 
those individuals reared in warmer temperatures 
grow faster and mature at a smaller size (Atkinson 
1994). Whilst this ‘temperature-size response’ has 
been well documented in wild populations of aquatic 
ectotherms (Daufresne et  al. 2009), the mechanisms 
underpinning this response have remained debated 
(Pauly 2010, 2021; Lefevre et  al. 2017) and several 
explanations have been offered to resolve this interac-
tion between environment and growth (Deutsch et al. 
2015; Pörtner et  al. 2017; Clarke et  al. 2021; Pauly 
2021; Verberk et al. 2021).

The strength of temperature-size responses will 
vary between species, likely based on factors includ-
ing typical body size (Rubalcaba et al. 2020), sensi-
tivity to environmental changes (Forster et  al. 2011; 
Hoefnagel and Verberk 2015), scope of thermal niche 
(García Molinos et  al. 2016; Burrows et  al. 2019; 
Brito-Morales et  al. 2020), life history (Weber et  al. 
2015; Audzijonyte et  al. 2020), geography (Deutsch 
et al. 2020; Clarke et al. 2021), feeding strategy and 
behaviour (Block et al. 2011) and physiology (Atkin-
son et  al. 2006). Therefore, rather than testing, if 
an ectothermic species displays a temperature-size 

response at all, it may be useful to compare the 
degree of responses between species, in order to 
reveal factors associated with strong temperature-size 
responses (Verberk et al. 2021).

In the present study, we investigated the rela-
tion between the maximum body length (hereaf-
ter simply referred to as ‘maximum length’) of 
ten teleost fish species and ocean temperature and 
dissolved oxygen concentration. This was done 
by fitting generalised additive models (GAMs) to 
open-source long-term bottom trawl survey data 
collected in Norwegian shelf and offshore waters 
(Djupevåg 2021). The ten study species included 
one benthopelagic species, Greenland halibut 
(Reinhardtius hippoglossoides, Walbaum 1792); 
two pelagic species, capelin (Mallotus villosus, 
Müller 1776) and golden redfish (Sebastes nor-
vegicus, Ascanius 1772); one bathypelagic species, 
beaked redfish (Sebastes mentella, Travin, 1951); 
and six demersal species, Norway redfish (Sebastes 
viviparus, Krøyer 1845), cusk (Brosme brosme, 
Ascanius 1772), Atlantic wolffish (Anarhichas 
lupus, Linnaeus 1758), spotted wolffish (Anarhi-
chas minor, Olafsen 1772), daubed shanny (Lepto-
clinus maculatus, Fries 1838) and polar cod (Bore-
ogadus saida, Lepechin, 1774).

Whilst much of the temperature-size research 
on marine ectotherms has focused on warming and 
maturation, we investigated the influence of tempera-
ture, dissolved oxygen concentrations and geographic 
location (representing other latent environmental 
variables) on the maximum length of species, as the 
mechanisms between these responses may vary (Hoe-
fnagel et  al. 2018). In turn, we hypothesise that the 
largest study species will exhibit the strongest nega-
tive temperature-size response (i.e. smaller in warmer 
temperatures), as larger ectotherm species have been 
found to be more sensitive to increased temperatures 
and deoxygenation (Rodnick et  al. 2004; Messmer 
et al. 2017; Rubalcaba et al. 2020).

Methods

Study area

The study area includes coastal and offshore 
waters of Norway, extending from the temperate 
North Sea, Skagerrak and the Norwegian Sea to 
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the Barents Sea and southern portion of the Arc-
tic Ocean along the northern shelf of Svalbard 
(Fig.  1). Spanning a latitudinal range from 56°N 
to 82°N, the study area is marked by a temperature 
gradient from an annual mean sea surface tempera-
ture (SST) of 10.7  °C in the North Sea, to 4.8  °C 
in the northern Barents Sea and southern Arctic 
Ocean (Gonzalez-Pola et al. 2019).

Trawl survey data

The survey data employed in the present study were 
collected during the Norwegian Institute of Marine 
Research’s long-term bottom trawl surveys between 
1980 and 2020 (Djupevåg 2021). These long-term 
trawl surveys provide data on the abundance of tar-
geted species to inform stock assessments across 

Fig. 1   Map of the study area, including the North Sea, 
Skagerrak, the Norwegian Sea, the Barents Sea and the south-
ern portion of the Arctic Ocean. Bathymetry is displayed 

across the study area (m). This figure was created using the 
raster package (Hijmans 2021) in R (Team R Development 
Core 2021)
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Norwegian waters (Djupevåg 2021). The survey data 
are publicly available via the Norwegian Marine 
Data Centre (https://​doi.​org/​10.​21335/​NMDC-​32825​
9372).

To account for variation in sampling methods over 
the period 1980–2020, we restricted the data utilised 
in the present study to a single gear type and sam-
pling method (‘shrimp trawl’, 15–35 mm mesh size) 
between 1990 and 2020. This provided us with a total 
of 256,788 records of 198 unique species caught in 
22,262 research trawls (Fig.  2). The mean length of 
trawling events was 1.2 nautical miles. We selected 
those species that had more than 2000 records. This 
reduced our dataset to 239,902 records for 36 species. 
The information gathered from each record included 
the maximum length (total length (TL), cm) of fishes 
collected in a trawling event, the bottom depth of the 
trawl sample and geographic location of the start of 
the trawl station (latitude, longitude).

Environmental data and exploratory analyses

Mean temperature (°C) and dissolved oxygen concen-
tration (mols/m−3) at the maximum bottom depth of 
each raster cell (5 arcmin) were extracted from Bio-
Oracle (Assis et al. 2018). Bio-Oracle environmental 
layers were produced via monthly averages of climate 
data between 2000 and 2014; thus, they represent the 
prevailing, long-term environmental conditions expe-
rienced by the study species. Environmental measure-
ments were associated with maximum length records 
based on the latitude and longitude of sample loca-
tion. For data analyses, longitude and latitude were 
expressed in Universal Transverse Mercator (UTM) 
coordinates, i.e. eastings and northings. For report-
ing purposes, the dissolved oxygen concentration val-
ues from Bio-Oracle were converted from mols/m−3 
to mg/L using the unit conversions provided by the 
International Council for the Exploration of the Seas 
(ICES 2022).

We tested for multicollinearity between environ-
mental covariates by calculating the Pearson’s corre-
lation coefficient (r) between temperature, dissolved 
oxygen concentration, eastings and northings for the 
36 selected species. Such multicollinearity analy-
ses are necessary as regression models, including 
GAMs, are sensitive to highly correlated continuous 
variables (Guisan et al. 2002; Dormann et al. 2013). 
For the majority of the 36 species, the Pearson’s r 

between temperature and dissolved oxygen concentra-
tion was greater than 0.7. In order to avoid problems 
with model fit via multicollinearity, the relationship 
between temperature and dissolved oxygen concen-
tration across the study extent was examined using a 
GAM, and the residuals from this model (henceforth 
‘OxyResid’) were extracted and subsequently used as 
a covariate within our maximum length GAMs (Sup-
plementary Fig.  1) (Leathwick et  al. 2006; García 
et  al. 2020). The OxyResid covariate indicates, at 
each sample site, the deviation in mean dissolved 
oxygen concentration that is expected at its given 
temperature, i.e. accounts for regional-scale variation 
in dissolved oxygen concentration (Leathwick et  al. 
2006).

The Pearson’s correlation coefficients were also 
calculated between temperature, OxyResid, eastings 
and northings for the environmental data pertain-
ing to where each species was sampled. Pearson’s r’s 
greater than 0.7 in absolute value were considered 
indicative of multicollinearity, and species where 
this was the case were excluded from subsequent 
analyses. A total of ten species (67,029 records) had 
a Pearson’s r less than 0.7 in absolute value and were, 
therefore, included in maximum length GAM analy-
ses (Table 1). Before fitting GAMs, we explored the 
distribution of the covariates included to visually 
identify outliers and subsequently removed them 
(Zuur et al. 2010). After this data treatment, the total 
number of records amongst the ten study species was 
reduced to 66,875 (Supplementary Figs. 2–11).

Study species

The ten species selected for maximum length GAM 
analyses include two pelagic species, one bathy-
pelagic species, one benthopelagic species and six 
demersal species. Capelin is a pelagic, pan-Arctic 
planktivore species that represents an important prey 
item for piscivorous fish (Fall et  al. 2018). Golden 
redfish is a pelagic, long-lived and late-to-mature 
Atlantic species that is found across shelf waters and 
the upper bathyal zone (Bakay 2017). Beaked red-
fish is a bathypelagic, long-lived species that inhabits 
deep-water habitats, as well as pelagic areas of con-
tinental slopes of the Atlantic Ocean (Cadrin et  al. 
2010). Greenland halibut is a benthopelagic flatfish 
species with circumpolar distribution that inhab-
its coastal fjords and bays, as well as slope areas of 

https://doi.org/10.21335/NMDC-328259372
https://doi.org/10.21335/NMDC-328259372
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continental shelves (Giraldo et  al. 2018). Norway 
redfish is a demersal species that occurs in Atlan-
tic coastal and shelf waters and prefers structurally 

complex habitat, including boulder fields or sponge 
and coral habitat (Kutti and Fosså 2015). Cusk is a 
demersal Atlantic species that inhabits the upper slope 

Fig. 2   Spatial distribution of the shrimp bottom trawl survey 
data collected between 1990 and 2020 that were used in the 
present study (n = 22,262; Djupevåg 2021). This figure was 

created using the raster package (Hijmans 2021) in R (Team R 
Development Core 2021)



1420	 Environ Biol Fish (2022) 105:1415–1429

1 3
Vol:. (1234567890)

to deep continental shelf waters (Knutsen et al. 2009). 
Atlantic wolffish is a demersal, denning species that 
inhabit high-rugosity habitat in coastal waters, as well 
as gravelly and boulder field habitats in deeper waters 
(Novaczek et al. 2017). Spotted wolffish is demersal, 
and similarly inhabits complex and high-rugosity 
habitat around or within sheltered dens across the 
Atlantic Ocean (Baker et  al. 2012). Daubed shanny 
is a demersal, circumpolar, cold-adapted species that 
inhabits soft bottoms (Meyer Ottesen et  al. 2011). 
Lastly, polar cod is a circumpolar demersal species 
that is the most abundant Arctic fish to inhabit areas 
under and around pack ice, although it is also found 
in ice-free areas (David et al. 2016).

Model fitting

GAMs were employed to investigate the influence 
of temperature and dissolved oxygen concentration 
(more precisely, OxyResid) on the maximum length 
of the ten study species. In addition to these environ-
mental covariates, a tensor product smooth between 
eastings and northings was included to represent the 
effects of geographic location. This term represents a 
proxy for latent environmental or ecological covari-
ates that were otherwise not included in the model 
(e.g. variation in depth). This tensor product smooth 
term also accounts for the broad-scale spatial auto-
correlation that may be present within the maximum 
length data (Wood 2006; Grüss et  al. 2016, 2018a, 
2021). For all ten study species, GAMs were fitted to 
maximum length data using the ‘gam’ function from 

the mgcv package in the R environment (Wood 2006; 
Team R Development Core 2021) as follows,

where L is the maximum length; g is the log-link 
function between maximum length and each term on 
the right side of the equation; te(X,Y) is the tensor 
product smooth between eastings and northings; and 
s is the thin plate regression spline with shrinkage 
(bs = ‘ts’ specified in the smooth function of ‘gam’ 
within the mgcv library) fitted to temperature and 
OxyResid (Grüss et al. 2018a).

The Gamma distribution was identified as the most 
appropriate distribution for the maximum length 
data employed in the present study, using diagnos-
tics from the fitdistrplus package (Delignette-Muller 
and Dutang 2015) in R (Team R Development Core 
2021). The thin plate regression splines employed 
in GAMs were limited to four degrees of freedom 
(k = 4) in order to prevent overfitting and to preserve 
the interpretability of model results (Mannocci et al. 
2017; Grüss et  al. 2018b; Weijerman et  al. 2019). 
In addition, an extra penalty was applied to model 
covariates as their smoothing parameter approached 
zero, which allowed for the complete removal of a 
covariate when its smoothing parameter equalled zero 
(Marra and Wood 2011; Grüss et al. 2014).

Model validation

To evaluate the GAMs of the ten study species, we 
relied on two performance metrics: (1) the adjusted 

(1)g(L) = te(X, Y) + s(Temperature) + s(OxyResid)

Table 1   The observed 
and reported maximum 
body length (total length 
(TL), cm) of study species. 
Reported maximum 
lengths: 1Robins et al. 1986, 
2Frimodt 1995, 3Orlov and 
Binohlan 2009, 4Hureau 
and Litvinenko 1986, 
5Wilhelms, 2013, 6Winters 
1970, 7Muus and Nielsen 
1999, 8Cohen et al. 1990

Species Observed maximum 
length (cm)

Reported maxi-
mum length 
(cm)

Spotted wolffish Anarhichas minor 135 1801

Cusk Brosme brosme 104 1202

Greenland halibut Reinhardtius hippoglossoides 98 1303

Golden redfish Sebastes norvegicus 80 1004

Atlantic wolffish Anarhichas lupus 124 1501

Beaked redfish Sebastes mentella 69 785

Norway redfish Sebastes viviparus 40 675

Capelin Mallotus villosus 21 256

Daubed shanny Leptoclinus maculatus 20 207

Polar cod Boreogadus saida 28 408
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coefficient of determination (adjusted-R2), which 
indicates the percentage of the variance explained 
by the GAMs; and (2) Spearman’s rank correlation 
coefficients (Spearman’s rho’s) between predicted 
maximum lengths and observed maximum lengths. 
Our validation procedure consisted, for each GAM, 
of the following: (1) the dataset of interest was split 
into a training dataset which was randomly assigned 
70% of the data and a test dataset which was assigned 
the remaining 30% of the data; (2) this was repeated 
10 times, such that 10 training datasets and 10 cor-
responding test datasets were produced; (3) the GAM 
was fit to each of the 10 training datasets; and (4) the 
10 GAMs fitted using the 10 training datasets were 
evaluated using the corresponding test datasets and 
the performance metrics (adjusted-R2 and Spear-
man’s rho’s) (Grüss et al. 2016; Egerton et al. 2021). 
A given GAM was considered to have passed the 
evaluation test if, across all 10 replicates, the median 
adjusted-R2 was larger than 0.1 (Legendre and Leg-
endre 1998; Grüss et al. 2020) and the median Spear-
man’s rho’s was significantly different from zero at 
the α = 0.05 level (Grüss et al. 2014, 2021; Weijerman 
et al. 2019; Egerton et al. 2021).

Analyses with the fitted and validated models

To determine the relative importance of temperature, 
OxyResid and geographic location in explaining the 
maximum length of the ten study species, we imple-
mented the approach of Grüss et  al. (2016). This 
approach consists, for each study species, in compar-
ing the predictions of the final GAM with those of 
GAMs where the values of a given predictor (temper-
ature, OxyResid, eastings or northings) are randomly 
permuted within the dataset fitted to the model (‘ran-
dom GAMs’) (Thuiller et al. 2012; Grüss et al. 2016). 
An index of relative importance is obtained for each 
predictor (temperature, OxyResid, eastings and north-
ings) by computing one minus the Pearson’s correla-
tion coefficient between the predictions of the final 
GAMs and the predictions from the random GAMs 
(Grüss et  al. 2016; Dove et  al. 2020; Bolser et  al. 
2020).

We also used the results from the GAMs to pre-
dict the maximum length of study species as a func-
tion of temperature using the ‘predict.gam’ func-
tion from the mgcv package (Wood 2006; Team R 
Development Core 2021). Specifically, we predicted 

maximum lengths over a vector of values ranging 
between the minimum and maximum values of tem-
perature encountered by the species of interest where 
it was sampled, whilst (1) setting OxyResid to its 
mean value from the modelled dataset and (2) setting 
easting and northings to their values at the barycentre 
of the study area (Grüss et al. 2018c, 2020).

Examining the potential effects of fishing pressure on 
the maximum length of study species

In order to acknowledge the potential effects of fish-
ing pressure on the maximum length of our study 
species, we calculated a ‘pseudo-Z’, or pseudo-total 
mortality (Z) value, for the 9 species included in the 
present study that are targeted by fisheries (all spe-
cies except for daubed shanny). This was done by 
employing our maximum length records to con-
struct a length-converted catch curve (Pauly 1990), 
using the FiSAT II Fish Stock Assessment Tool 
(Gayanilo et al. 2005). Catch curves were calculated 
using two growth parameters included in von Berta-
lanffy growth functions: asymptotic length (L∞) and 
growth coefficient (K, see Supplementary Table 1 and 
Appendix for methods). For each species, pseudo-Z 
values were calculated across 5-year periods. We then 
compared these values to determine whether trends 
in fishing mortality (F) changed across the 30-year 
study period. Here, we assume that natural mortal-
ity (M) for species is constant across time, so that 
changes in pseudo-Z reflect changes in F (Z = M + F; 
Beverton and Holt 1956).

Results

The length data included in analyses were generally 
representative of adult size classes for study species 
(Table  1). Across the study area, mean sea surface 
temperature ranged from − 1 in the northern extent 
to 11.5  °C in the southern extent, whilst mean tem-
perature at bottom depth ranged from − 1 to 8.9  °C 
(Supplementary Fig.  12). The gradient of dissolved 
oxygen concentration ranged from 8.45 in the south-
ern extent to 10.9 mg/L in the northern extent of the 
study area (Supplementary Fig. 13).

For all ten study species, temperature, Oxy-
Resid and the interaction between eastings 
and northings were found to have a significant 
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effect (p < 0.005) on their maximum length 
(Table  2). In estimating the relative impor-
tance of model covariates in explaining maxi-
mum length, eastings and northings were found 
to be the most important in explaining maxi-
mum length for all ten study species (Supple-
mentary Fig.  14). All GAMs passed the model 
evaluation test, as (1) median adjusted-R2 val-
ues ranged between 0.124 (spotted wolffish) 
and 0.331 (Greenland halibut); and (2) Spear-
man’s rho values ranged between 0.361 (spot-
ted wolffish) and 0.573 (beaked redfish) and 
were all significantly different from zero at the 
α = 0.05 level (Supplementary Fig. 15).

Predictions of the maximum length of the study 
species across their temperature range displayed 
three patterns (Fig.  3). The two species with the 
largest predicted maximum lengths, spotted wolff-
ish and cusk, were predicted to decrease in maxi-
mum length as temperature increased—this was 
also the case for Norway redfish (Fig.  3). In con-
trast, capelin, Greenland halibut, golden red-
fish, daubed shanny and polar cod were predicted 
to increase in maximum length as temperature 
increased in the study area. Atlantic wolffish and 
beaked redfish were predicted to increase in maxi-
mum length until a given temperature, after which 
maximum length decreased (Fig.  3). Lastly, the 
fishing mortality proxy pseudo-Z values suggested 
that no observable positive or negative trends 
occurred across the 30-year study period (Supple-
mentary Table 1).

Discussion

Overall, our results confirm our original hypothesis 
that large species will exhibit the strongest nega-
tive temperature-size response. The two largest spe-
cies, spotted wolffish and cusk, were predicted to 
experience the largest relative decrease in maximum 
body length across their observed temperature range 
(Fig. 3). These results are consistent with the body of 
literature that suggests larger species are more likely 
to experience stronger negative temperature-size 
responses (Forster et al. 2012; van Rijn et al. 2017). 
In contrast, the maximum lengths of capelin, Green-
land halibut, golden redfish, daubed shanny and polar 
cod were shown to increase with temperature. Inter-
estingly, all of the aforementioned species display 
smaller maximum lengths within the coldest extent of 
their temperature range.

Our results corroborate the temperature-size mech-
anism that is part of the gill-oxygen limitation theory 
(GOLT, Pauly 2019, 2021). According to the GOLT, 
as the 3-dimensional bodies of ectotherms grow 
towards their asymptotic sizes, their 2-dimensional 
gills become gradually unable to supply sufficient 
oxygen (per unit weight) required for the synthesis 
of body proteins to exceed the rate of spontaneous 
protein denaturation (Pauly 1979, 1981). As a result, 
growth ceases when synthesis equals denaturation 
and, thus, relatively high temperatures for the thermal 
niche of a species, which promote denaturation, cause 
ectotherms to remain smaller (Pauly and Cheung 
2018; Pauly 2019, 2021), as exhibited here by spotted 
wolffish, cusk and Norway redfish.

Table 2   Number of 
data points fitted to the 
generalised additive models 
(GAMs) of the ten study 
species, and the adjusted-R2 
of these GAMs. All GAMs 
express maximum body 
length as a function of 
temperature, the residuals 
of dissolved oxygen and 
temperature (OxyResid) and 
an interaction term (tensor 
product smooth) between 
eastings and northings 
(Eq. 1)

Species Number of data 
points

Adjusted-R2

Spotted wolffish Anarhichas minor 4292 0.152
Cusk Brosme brosme 3870 0.244
Greenland halibut Reinhardtius hippoglossoides 9816 0.345
Golden redfish Sebastes norvegicus 8454 0.316
Atlantic wolffish Anarhichas lupus 5056 0.164
Beaked redfish Sebastes mentella 11,502 0.324
Norway redfish Sebastes viviparus 5551 0.173
Capelin Mallotus villosus 9887 0.143
Daubed shanny Leptoclinus maculatus 3113 0.225
Polar cod Boreogadus saida 5334 0.161
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Fig. 3   The maximum 
length (TL, cm) of the 
ten species as a function 
of temperature (°C), as 
predicted by the generalised 
additive models (GAMs) 
developed in the present 
study, with 95% confidence 
intervals. The dashed line 
indicates the reported tem-
perature range of species, 
including the mean (dot) as 
reported by species-specific 
mapping parameters in 
AquaMaps (Kaschner et al. 
2019). This figure was cre-
ated using R Studio (Team 
R Development Core 2021)
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Spontaneous protein denaturation, i.e. the loss of 
the quaternary structure which give proteins their 
shapes, and thus enable them to function (e.g. as 
enzyme), however, is not only accelerated by increas-
ing, but also by decreasing temperature, a process 
known as ‘cold denaturation’ (Privalov 1990; Grazi-
ano 2014; Sanfelice et al. 2015; Yan et al. 2018). The 
result has been called ‘metabolic cold adaptation’, 
whereby some species have evolved to elevate their 
metabolic rate to live at cold temperatures (Wohls-
chlag 1962, 1964; Pauly 1979). Thus, because of 
the need to replace proteins denatured by the cold 
temperature they inhabit, some polar fishes display 
a metabolic rate that is higher than expected given a 
extrapolation of standard metabolism-temperature 
relationships (Wohlschlag 1962, 1964; Pauly 1979). 
Also, Pauly (1980) reported that fishes in water < 4 °C 
exhibited higher natural mortality rates than expected, 
other things (i.e. growth parameters) being equal, and 
body size was significantly negatively correlated with 
mortality. These results suggest that cold-water fishes 
are relatively smaller in body size (Pauly 1980).

Cold denaturation has received relatively little 
attention vis-à-vis the temperature-size relationship 
for water-breathing ectotherms (Todgham et al. 2007, 
2017; Fraser et al. 2007; Peck 2016, 2018). Although 
it was a constitutive element of the first presentation 
of the GOLT (Pauly 1979) and was corroborated in 
Pauly (1980), it was not incorporated into the further 
development of this theory. In fact, Pauly (2019, pg. 
169) sent it into ‘profound hibernation’. However, 
the humped shapes of the temperature-size response 
for Atlantic wolffish and beaked redfish present evi-
dence for cold denaturation causing a response simi-
lar to elevated temperatures, thus justifying reviving 
the cold denaturation hypothesis as an explanatory 
mechanism for reduced maximum sizes of fish at very 
low temperatures. Recent findings from the Antarc-
tic also support the reviving of the cold denaturation 
hypothesis. Fraser et al. (2022) found that the growth 
of Antarctic fishes was limited by high ‘degradation’ 
rates of proteins relative to temperate species. These 
and our results add to the growing body of literature 
highlighting the limitations of growth for marine 
ectotherms at low temperatures.

As previously mentioned, capelin, Greenland 
halibut, golden redfish, daubed shanny and polar 
cod are predicted to increase in maximum length 
with temperature (Fig.  3). These findings suggest 

that these species have optimal temperatures which 
exceed the temperatures at which they were sam-
pled, and beyond, where their maximum length 
would start to decline, as the data employed in the 
current study only covers a part of the temperatures 
our study species experience (Fig.  3). We interpret 
the parabolic temperature-size response of Atlantic 
wolffish and beaked redfish, to result from the study 
area spanning a range of temperatures which include 
the temperature to which they are best adapted, 
and thus their maximum length can increase or 
decrease depending on the local conditions. Over-
all, we expect that the variable temperature-size 
responses at both warm and cold extents reflect 
species-specific growth sensitivities to either warm-
ing or cooling temperatures across their geographic 
range, as well as species traits. We, therefore, rec-
ommend applications of our modelling approach 
that would incorporate further species’ traits, includ-
ing their sensitivities to temperature and dissolved 
oxygen concentration, to elucidate temperature-
size responses at both warm and cold temperatures 
between species of variable size, milieu, activity and 
trophic level (van Rijn et al. 2017).

Regarding the relative importance of model covar-
iates, for all study species, geographic location was 
found to be most important in explaining maximum 
length. This is to be expected, as these variables were 
chosen to represent latent environmental and ecologi-
cal variables in the study region (Grüss et  al. 2016, 
2018a, 2021; Bolser et al. 2020), and may reflect vari-
ation in depth, the availability of resources, ecologi-
cal competition, size selective predation or mortality, 
as well as fishing effects (Connolly and Roughgarden 
1999; Pauly 2010; Verberk and Bilton 2011; Cheung 
et al. 2013; Tu et al. 2018; Grüss et al. 2021). Regard-
ing temperature and dissolved oxygen concentra-
tion, we recommend that future research compares 
the temperature-size response between taxonomic 
groups, as well as the interactive effect between tem-
perature and dissolved oxygen concentration on deter-
mining the maximum length of marine ectotherms. 
For example, those species that are more vulnerable 
to low oxygen conditions may experience a stronger 
negative temperature-size response (Rubalcaba et  al. 
2020).

The maximum body lengths analysed in the cur-
rent study approximate adult body sizes for all study 
species (Table  1). Overall, fishing pressure may 
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truncate the size and/or age distribution of fished 
populations, and conversely, reductions in fishing 
pressure relative to historical levels could see the 
increase of maximum body lengths of targeted popu-
lations (Worm et al. 2009). Yet, considering the lack 
of any trend observed in the pseudo-Z values, we 
assume that fishing pressure was unlikely to confound 
the predictions of maximum length for the study 
species that are fished within the area (Supplemen-
tary Table 1). Nonetheless, the interaction of further 
ocean warming and fishing pressure may affect the 
maximum body length of targeted populations (Tu 
et al. 2018). Therefore, we recommend that the future 
studies that will utilise our modelling framework to 
investigate the relationship between maximum length, 
temperature and dissolved oxygen concentration also 
consider fishing pressure (e.g. trawl footprint).

In conclusion, by predicting the maximum length 
of various species across Norwegian waters, our 
results confirm our hypothesis that the largest species 
experience the strongest negative temperature-size 
responses. Furthermore, we have observed limita-
tions to the maximum body length of several species 
within the coldest extent of their observed tempera-
ture range. These results support the temperature-size 
mechanism as described by the GOLT, and offer evi-
dence to revive the cold denaturation hypothesis as 
a mechanism that limits the maximum body size of 
marine ectotherms at very low temperatures.
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