1,234 research outputs found

    Conformal invariance and linear defects in the two-dimensional Ising model

    Full text link
    Using conformal invariance, we show that the non-universal exponent eta_0 associated with the decay of correlations along a defect line of modified bonds in the square-lattice Ising model is related to the amplitude A_0=xi_n/n of the correlation length \xi_n(K_c) at the bulk critical coupling K_c, on a strip with width n, periodic boundary conditions and two equidistant defect lines along the strip, through A_0=(\pi\eta_0)^{-1}.Comment: Old paper, for archiving. 5 pages, 4 figures, IOP macro, eps

    Fisher Renormalization for Logarithmic Corrections

    Get PDF
    For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at their upper critical dimensions, where predictions for logarithmic corrections are made.Comment: 10 pages, no figures. Version 2 has added reference

    Critical phenomena on scale-free networks: logarithmic corrections and scaling functions

    Get PDF
    In this paper, we address the logarithmic corrections to the leading power laws that govern thermodynamic quantities as a second-order phase transition point is approached. For phase transitions of spin systems on d-dimensional lattices, such corrections appear at some marginal values of the order parameter or space dimension. We present new scaling relations for these exponents. We also consider a spin system on a scale-free network which exhibits logarithmic corrections due to the specific network properties. To this end, we analyze the phase behavior of a model with coupled order parameters on a scale-free network and extract leading and logarithmic correction-to-scaling exponents that determine its field- and temperature behavior. Although both non-trivial sets of exponents emerge from the correlations in the network structure rather than from the spin fluctuations they fulfil the respective thermodynamic scaling relations. For the scale-free networks the logarithmic corrections appear at marginal values of the node degree distribution exponent. In addition we calculate scaling functions, which also exhibit nontrivial dependence on intrinsic network properties.Comment: 15 pages, 4 figure

    Bond-disordered Anderson model on a two dimensional square lattice - chiral symmetry and restoration of one-parameter scaling

    Full text link
    Bond-disordered Anderson model in two dimensions on a square lattice is studied numerically near the band center by calculating density of states (DoS), multifractal properties of eigenstates and the localization length. DoS divergence at the band center is studied and compared with Gade's result [Nucl. Phys. B 398, 499 (1993)] and the powerlaw. Although Gade's form describes accurately DoS of finite size systems near the band-center, it fails to describe the calculated part of DoS of the infinite system, and a new expression is proposed. Study of the level spacing distributions reveals that the state closest to the band center and the next one have different level spacing distribution than the pairs of states away from the band center. Multifractal properties of finite systems furthermore show that scaling of eigenstates changes discontinuously near the band center. This unusual behavior suggests the existence of a new divergent length scale, whose existence is explained as the finite size manifestation of the band center critical point of the infinite system, and the critical exponent of the correlation length is calculated by a finite size scaling. Furthermore, study of scaling of Lyapunov exponents of transfer matrices of long stripes indicates that for a long stripe of any width there is an energy region around band center within which the Lyapunov exponents cannot be described by one-parameter scaling. This region, however, vanishes in the limit of the infinite square lattice when one-parameter scaling is restored, and the scaling exponent calculated, in agreement with the result of the finite size scaling analysis.Comment: 23 pages, 11 figures. RevTe

    Computer simulation of the critical behavior of 3D disordered Ising model

    Full text link
    The critical behavior of the disordered ferromagnetic Ising model is studied numerically by the Monte Carlo method in a wide range of variation of concentration of nonmagnetic impurity atoms. The temperature dependences of correlation length and magnetic susceptibility are determined for samples with various spin concentrations and various linear sizes. The finite-size scaling technique is used for obtaining scaling functions for these quantities, which exhibit a universal behavior in the critical region; the critical temperatures and static critical exponents are also determined using scaling corrections. On the basis of variation of the scaling functions and values of critical exponents upon a change in the concentration, the conclusion is drawn concerning the existence of two universal classes of the critical behavior of the diluted Ising model with different characteristics for weakly and strongly disordered systems.Comment: 14 RevTeX pages, 6 figure

    A Farewell to Liouvillians

    Full text link
    We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62}, 2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87}, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be re-expressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods, including their extension to NL>1N_L > 1 Liouvillian flavors, to random matrix ensembles, using numerical calculations for small integer NLN_L and an analytic analysis for large NLN_L. We find that behavior at NL>1N_L > 1 is different in qualitative ways from that at NL=1N_L=1. In particular, the NL=N_L = \infty limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large NLN_L treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too

    Diagrammatic analysis of the two-state quantum Hall system with chiral invariance

    Full text link
    The quantum Hall system in the lowest Landau level with Zeeman term is studied by a two-state model, which has a chiral invariance. Using a diagrammatic analysis, we examine this two-state model with random impurity scattering, and find the exact value of the conductivity at the Zeeman energy E=ΔE = \Delta. We further study the conductivity at the another extended state E=E1E = E_1 (E1>Δ E_1 > \Delta). We find that the values of the conductivities at E=0E = 0 and E=E1E = E_1 do not depend upon the value of the Zeeman energy Δ\Delta. We discuss also the case where the Zeeman energy Δ\Delta becomes a random field.Comment: 14P, Late

    Passive scalars, random flux, and chiral phase fluids

    Full text link
    We study the two-dimensional localization problem for (i) a classical diffusing particle advected by a quenched random mean-zero vorticity field, and (ii) a quantum particle in a quenched random mean-zero magnetic field. Through a combination of numerical and analytic techniques we argue that both systems have extended eigenstates at a special point in the spectrum, EcE_c, where a sublattice decomposition obtains. In a neighborhood of this point, the Lyapunov exponents of the transfer-matrices acquire ratios characteristic of conformal invariance allowing an indirect determination of 1/r1/r for the typical spatial decay of eigenstates.Comment: use revtex, two-column, 4 pages, 5 postscript figures, submitted to PR

    Epstein-Barr virus (EBV) deletions as biomarkers of response to treatment of chronic active EBV

    Get PDF
    Chronic active Epstein–Barr virus (CAEBV) disease is a rare condition characterised by persistent EBV infection in previously healthy individuals. Defective EBV genomes were found in East Asian patients with CAEBV. In the present study, we sequenced 14 blood EBV samples from three UK patients with CAEBV, comparing the results with saliva CAEBV samples and other conditions. We observed EBV deletions in blood, some of which may disrupt viral replication, but not saliva in CAEBV. Deletions were lost overtime after successful treatment. These findings are compatible with CAEBV being associated with the evolution and persistence of EBV+ haematological clones that are lost on successful treatment

    Strong Coupling Fixed Points of Current Interactions and Disordered Fermions in 2D

    Full text link
    The all-orders beta function is used to study disordered Dirac fermions in 2D. The generic strong coupling fixed `points' of anisotropic current-current interactions at large distances are actually isotropic manifolds corresponding to subalgebras of the maximal current algebra at short distances. The IR theories are argued to be current algebra cosets. We illustrate this with the simple example of anisotropic su(2), which is the physics of Kosterlitz-Thouless transitions. We work out the phase diagram for the Chalker-Coddington network model which is in the universality class of the integer Quantum Hall transition. One massless phase is in the universality class of dense polymers.Comment: published version (Phys. Rev. B
    corecore