74 research outputs found

    Nonlinear Schr\"odinger equation for a PT symmetric delta-functions double well

    Full text link
    The time-independent nonlinear Schr\"odinger equation is solved for two attractive delta-function shaped potential wells where an imaginary loss term is added in one well, and a gain term of the same size but with opposite sign in the other. We show that for vanishing nonlinearity the model captures all the features known from studies of PT symmetric optical wave guides, e.g., the coalescence of modes in an exceptional point at a critical value of the loss/gain parameter, and the breaking of PT symmetry beyond. With the nonlinearity present, the equation is a model for a Bose-Einstein condensate with loss and gain in a double well potential. We find that the nonlinear Hamiltonian picks as stationary eigenstates exactly such solutions which render the nonlinear Hamiltonian itself PT symmetric, but observe coalescence and bifurcation scenarios different from those known from linear PT symmetric Hamiltonians.Comment: 16 pages, 9 figures, to be published in Journal of Physics

    Random-Phase Solitons in Nonlinear Periodic Lattices

    Get PDF
    We predict the existence of random phase solitons in nonlinear periodic lattices. These solitons exist when the nonlinear response time is much longer than the characteristic time of random phase fluctuations. The intensity profiles, power spectra, and statistical (coherence) properties of these stationary waves conform to the periodicity of the lattice. The general phenomenon of such solitons is analyzed in the context of nonlinear photonic lattices

    Use of Equivalent Hermitian Hamiltonian for PTPT-Symmetric Sinusoidal Optical Lattices

    Full text link
    We show how the band structure and beam dynamics of non-Hermitian PTPT-symmetric sinusoidal optical lattices can be approached from the point of view of the equivalent Hermitian problem, obtained by an analytic continuation in the transverse spatial variable xx. In this latter problem the eigenvalue equation reduces to the Mathieu equation, whose eigenfunctions and properties have been well studied. That being the case, the beam propagation, which parallels the time-development of the wave-function in quantum mechanics, can be calculated using the equivalent of the method of stationary states. We also discuss a model potential that interpolates between a sinusoidal and periodic square well potential, showing that some of the striking properties of the sinusoidal potential, in particular birefringence, become much less prominent as one goes away from the sinusoidal case.Comment: 11 pages, 8 figure

    PT-symmetric optical lattices

    Get PDF
    The basic properties of Floquet-Bloch (FB) modes in parity-time (PT)-symmetric optical lattices are examined in detail. Due to the parity-time symmetry of such complex periodic potentials, the corresponding FB modes are skewed (nonorthogonal) and nonreciprocal. The conjugate pairs of these FB modes are obtained by reflecting both the spatial coordinate and the Bloch momentum number itself. The orthogonality conditions are analytically derived for a single cell, for both a finite and an infinite lattice. Some of the peculiarities associated with the diffraction dynamics in PT lattices such as nonreciprocity, power oscillations, and phase dislocations, are also examined

    PT-Symmetric Periodic Optical Potentials

    Get PDF
    In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn't led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT-symmetric Optics and paved the way for the first experimental observation of PT-symmetry breaking in any physical system. In this paper, we present recent results regarding PT-symmetric Optics

    Stability of vortex solitons in a photorefractive optical lattice

    Full text link
    Stability of off-site vortex solitons in a photorefractive optical lattice is analyzed. It is shown that such solitons are linearly unstable in both the high and low intensity limits. In the high-intensity limit, the vortex looks like a familiar ring vortex, and it suffers oscillatory instabilities. In the low-intensity limit, the vortex suffers both oscillatory and Vakhitov-Kolokolov instabilities. However, in the moderate-intensity regime, the vortex becomes stable if the lattice intensity or the applied voltage is above a certain threshold value. Stability regions of vortices are also determined at typical experimental parameters.Comment: 3 pages, 5 figure

    Observation of dipole-mode vector solitons

    Full text link
    We report on the first experimental observation of a novel type of optical vector soliton, a {\em dipole-mode soliton}, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.Comment: 4 pages, 8 figures; pictures in the PRL version are better qualit

    Dipole-Mode Vector Solitons

    Full text link
    We find a new type of optical vector soliton that originates from trapping of a dipole mode by a soliton-induced waveguide. These solitons, which appear as a consequence of the vector nature of the two component system, are more stable than the previously found optical vortex-mode solitons and represent a new type of extremely robust nonlinear vector structure.Comment: Four pages with five eps figure

    A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity

    Get PDF
    The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as switches, logic gates and amplifiers are also shown

    Elliminating The Transverse Instabilities of Kerr Solitons

    Full text link
    We show analytically, numerically, and experimentally that a transversely stable one-dimensional [(1+1)D] bright Kerr soliton can exist in a 3D bulk medium. The transverse instability of the soliton is completely eliminated if it is made sufficiently incoherent along the transverse dimension. We derive a criterion for the threshold of transverse instability that links the nonlinearity to the largest transverse correlation distance for which the 1D soliton is stableComment: 14 pages, 2 figure
    corecore