
Int J Theor Phys (2011) 50: 1019–1041
DOI 10.1007/s10773-010-0625-6

PT -Symmetric Periodic Optical Potentials

K.G. Makris · R. El-Ganainy · D.N. Christodoulides ·
Z.H. Musslimani

Received: 11 October 2010 / Accepted: 7 December 2010 / Published online: 2 February 2011
© Springer Science+Business Media, LLC 2011

Abstract In quantum theory, any Hamiltonian describing a physical system is mathemat-
ically represented by a self-adjoint linear operator to ensure the reality of the associated
observables. In an attempt to extend quantum mechanics into the complex domain, it was
realized few years ago that certain non-Hermitian parity-time (P T ) symmetric Hamiltonians
can exhibit an entirely real spectrum. Much of the reported progress has been remained the-
oretical, and therefore hasn’t led to a viable experimental proposal for which non Hermitian
quantum effects could be observed in laboratory experiments. Quite recently however, it was
suggested that the concept of P T -symmetry could be physically realized within the frame-
work of classical optics. This proposal has, in turn, stimulated extensive investigations and
research studies related to P T -symmetric Optics and paved the way for the first experimen-
tal observation of P T -symmetry breaking in any physical system. In this paper, we present
recent results regarding P T -symmetric Optics.
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1 Introduction

One of the most fundamental assumptions of quantum theory is that the Hermiticity of every
operator is directly associated with a physical observable. This is necessary given that the
spectra of such self-adjoint operators (discrete and/or continuous) are real. In the case of
the Hamiltonian operator, this requirement gives rise to real energy levels and ensures con-
servation of the total probability (or unitary evolution). In 1998, Bender and Boettcher [7]
have numerically shown that a certain class of complex non-Hermitian Hamiltonians could
exhibit entirely real spectrum provided they respect parity-time (P T ) symmetry. The model
quantum mechanical Hamiltonian they considered [7] is given by HN = − ∂2

∂x2 − (ix)N ,
where N is a real constant. Bender and Boettcher have noted the following remarkable
results: When N ≥ 2 the spectrum of H is real, positive and discrete (corresponding to infi-
nitely many bound states). If on the other hand 1 < N < 2, then in this regime the spectrum
of H is no longer purely real and starts to involve complex conjugate pairs of eigenvalues
[7]. Thus, the point N = 2 signifies the onset of a spontaneous P T symmetry breaking:
A phase transition from the exact to broken P T symmetry phase. These remarkable find-
ings have motivated many researchers to revisit one of the most basic axioms of quantum
mechanics, i.e., the Hermiticity of a Hamiltonian, in an attempt to extend the framework
of quantum theory into the complex domain (see [4–11, 13, 45, 46] for review on P T
symmetric quantum theory).

While much theoretical success has been made in the general area of non-Hermitian
quantum theory, the observation of pseudo-Hermiticity in physical settings (classical or
quantum) has remained elusive. Quite recently the notion of P T symmetry was introduced
within the framework of optics [21, 22, 32, 33, 38, 39, 41]. Parity-time optical media can
be achieved through a judicious inclusion of gain/loss in guided wave geometries. One such
possibility is to consider waveguide arrays [17, 18] composed of P T symmetric periodic
structures in such a way that the P T symmetry of the entire system is preserved. Linear and
nonlinear wave propagation in such P T symmetric media have been studied theoretically for
the one and multi spatial dimensions. In the linear regime, various exotic phenomena have
been seen such as band merging, P T phase transition, double refraction and non-reciprocal
behavior [32, 33]. In the nonlinear case, various numerical and analytical solutions have
been identified [38, 39].

Most importantly, spontaneous P T symmetry-breaking has been experimentally ob-
served for the first time (in any physical system) within the realm of wave optics [22, 41].
In particular, both passive [22] and active [41] optical coupled systems have experimen-
tally demonstrated the unique properties of such non Hermitian systems such as power
oscillations, phase transition and non orthogonal supermodes (see [28] for views on the
experimental results reported in [41]). These findings, in turn, have stimulated considerable
research activity in the general area of P T optical potentials and led to several theoretical
predictions such as for example: P T symmetry-breaking in disordered lattices [12], Bloch
oscillations, transport and localization in complex crystals [29, 30], spectral singularities in
non Hermitian Friedrichs-Fano-Anderson model and complex potentials [31, 36, 37], P T
symmetric wave chaos [44], visualization of branch points in P T symmetric waveguides
[25] and subdiffraction and spatial filtering in gain/loss media [42].

In this paper, we present recent results in the emerging field of P T -symmetric Optics.
The stationary, as well as, the dynamical of optical guided waves in P T -lattices are investi-
gated in detail. Band merging, double refraction, non-reciprocity, bioorthogonality relations
are analytically and numerically examined. The orthogonality conditions are analytically
proved for a single cell, a finite and an infinite lattice, along with the projection coefficients
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and the completeness relations. Some of the peculiarities of the diffraction dynamics arising
in P T -lattices such as non-reciprocity, power oscillations and phase dislocations are also
discussed. Finally, nonlinear P T -symmetric optics and solitons are presented.

2 PT Symmetry in Optics

In optics, the paraxial equation of diffraction is mathematically isomorphic to that of quan-
tum Schrödinger equation. Motivated by this fact, Christodoulides group has recently sug-
gested the possibility of realizing P T -symmetric structures within the realm of optics [21,
32, 33, 38]. In these studies it was shown that optical P T -synthetic materials could lead
to new phenomena not possible in standard systems. Such effects include double refrac-
tion, power oscillations, eigenfunction unfolding, and non-reciprocal diffraction patterns to
mention a few [32, 33]. In addition, P T -configurations are described by a unique algebra
and hence much of their behavior (including their coupled mode analysis) has to be prop-
erly derived from first principles [21]. The proposed optical P T systems can be realistically
implemented through a judicious inclusion of gain/loss regions in guided wave geometries
[32, 33]. In the suggested optical analogy the complex refractive index distribution plays
the role of the optical potential. The parity-time condition implies that the real index pro-
file should be even in the transverse direction while the loss/gain distribution must be odd.
Gain/loss levels of approximately ±40 cm−1 at wavelengths of ≈1 µm, that are typically
encountered in standard quantum well semiconductor lasers or semiconductor optical am-
plifiers and photorefractive crystals should be sufficient to observe P T behavior [18, 43].
Optical nonlinearities (quadratic, cubic, photorefractive etc.) provide an additional degree of
freedom since they may allow one to study such configurations under nonlinear conditions
[17, 18].

Observation of P T symmetry breaking in complex optical potentials was first reported
by Guo et al. [22] in an AlGaAs coupled waveguide system. This structure involved two
weakly guided waveguide arms each designed to be single-modded at the operating wave-
length of λ = 1.55 µm. One of the waveguides was always transparent while the loss in the
second one was gradually increased to very high values (∼50 cm−1). To do so, chromium
was deposited on one of the arms. Chromium is known for its very high imaginary part in
its permittivity which also happens to be much greater than its corresponding real part. This
metal was used so as to introduce appreciable losses while avoiding any unbalancing effects
in the refractive index that may in turn disturb the required P T symmetry. Even though this
arrangement involves only loss, it can nevertheless be mapped on a P T configuration via a
straightforward transformation [22]. The total power from both channels of this system was
then collected and analyzed as a function of waveguide loss. The normalized transmission
results indicated a strong non-Hermitian behavior. As the loss in the dual complex potential
was initially increased, a decay of the total output transmission occurred as expected. Yet,
past a critical point (P T threshold) the transmission was found to increase. Loss enhanced
transmission is in this case a direct manifestation of P T non-Hermiticity. At the transition
point the symmetry of the structure is lost via passive P T -symmetry breaking, and coupling
between the waveguide channels begins to be reduced.

In a subsequent study by Ruter et al., a coupled P T waveguide system was experimen-
tally implemented having a balanced gain/loss profile [41]. This waveguide arrangement
was realized via Ti-indiffusion on an iron-doped LiNbO3 crystal. Gain was provided through
photorefractive two-wave mixing at levels of several cm−1, enough to compete with the cou-
pling between channels. Loss on the other hand was naturally present in the waveguides. The
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two-wave mixing process was accomplished at low pump powers so as to avoid again dis-
turbing the index balance needed for P T symmetry. The system’s gain was then increased
in time, thus allowing one to study this arrangement both below and above the P T phase
transition point. The complex modal profiles (amplitude and phase) were also clearly ob-
served in this study and were found to be in good agreement with theoretically anticipated
results [41].

3 Wave Propagation in Linear PT -Symmetric Periodic Media

As previously mentioned, the analogy between quantum mechanics and optics is based on
the fact that they share the same mathematical formalism. More specifically, the equation
governing optical beam propagation is described by a Schrödinger-like equation, namely
the paraxial equation of diffraction. Here we will primarily explore the diffraction dynamics
of optical beams and waves in P T symmetric complex potentials in the spatial domain. In
normalized units, the propagation dynamics is described by:

i
∂ψ

∂z
+ ∂2ψ

∂x2
+ V (x)ψ = 0, (1)

where ψ represents the electric field amplitude, z the propagation distance, x the spatial
coordinate, and V (x) the complex periodic optical potential with period D. In other words
it is V (x) = V (x + D). A necessary (but not sufficient) for a complex potential to be P T
symmetric is that its real part or refractive index profile is an even function of x, while the
imaginary component (loss and gain profile) is odd [7, 32, 33], i.e.,

V (x) = V̄ (−x), (2)

where V̄ (x) denotes the complex conjugate of V (x). We define the total optical power

P (z) =
∫ +∞

−∞
|ψ(x, z)|2dx, (3)

and the so-called “quasi-power” Q [3] as

Q(z) =
∫ +∞

−∞
ψ(x, z)ψ(−x, z)dx. (4)

Note that the quasi-power is, in general, neither positive definite nor real valued. It can be
shown that the quasi-power is a conserved quantity,

dQ(z)

dz
= 0, (5)

whereas the actual total optical power is not conserved and evolves according to

dP(z)

dz
= −2

∫ +∞

−∞
Im[V (x)]|ψ(x, z)|2dx. (6)

At this point we have to mention that P T -symmetric optical lattices may have entirely real
spectrum as well as equally distributed gain and loss, but they are not transparent. In an
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interesting study by Berry [13, 14], it was pointed out that the diffraction of optical beams
in P T periodic potentials is not unitary and the power is not conserved. The new intensity
sum rules that the amplitudes of the diffracted Bragg beams follow are analytically derived
and systematically examined [14]. This power oscillation effect is a direct consequence of
the non-orthogonality of the eigenmodes of any P T -symmetric non-Hermitian system. It is
also discussed in [32, 33] as well as in Sect. 5.

3.1 Floquet-Bloch Theory

To understand the properties of a periodic P T structure we first analyze its corresponding
band structure. To do so, we look for solutions of the form

ψ(x, z) = φ(x) exp(iβz), (7)

where β is the eigenvalue (propagation constant) and φ(x) is the eigenmode satisfying

[
d2

dx2
+ V (x)

]
φ = βφ. (8)

Equation (8) is a second order differential equation with a complex periodic coefficient V (x)

satisfying (2) whose two linearly independent solutions are given, according to Floquet-
Bloch theory [18, 26, 27], by

φ(1)
n (x, k) = u(1)

n (x, k)eikx, φ(2)
n (x, k) = u(2)

n (x, k)e−ikx, (9)

where n ∈ Z+, and k ≡ k(β) is the so-called Bloch momentum and u(1,2)
n (x, k) are complex,

periodic and bounded functions of x that satisfy

⌊(
d

dx
± ik

)2

+ V (x)

⌋
u(1,2)

n (x, k) = βn(k)u(1,2)
n (x, k), (10)

u(1,2)
n (x + D,k) = u(1,2)

n (x, k), k ∈
[
− π

D
,
π

D

)
. (11)

It suffices to consider only one set of solutions to (8) which we write in the form

φn(x, k) = un(x, k)eikx, un(x + D,k) = un(x, k), (12)

with un(x, k) satisfying

d2un(x, k)

dx2
+ 2ik

dun(x, k)

dx
+ [V (x) − k2]un(x, k) = βn(k)un(x, k). (13)

If we take the complex conjugate of (13), make the change of variables: x → −x, k → −k

and use condition (2) we find

d2ūn(−x,−k)

dx2
−2ik

dūn(−x,−k)

dx
+[V (x)−k2]ūn(−x,−k) = β̄n(−k)ūn(−x,−k). (14)

In what follows, we shall distinguish between two important cases.
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Real Potentials Here Im[V (x)] = 0, and the spectrum of d2/dx2 + V (x) is real and con-
sists of the union of closed intervals called spectral bands separated by infinitely many spec-
tral gaps [19, 20, 34]. The corresponding eigenfunctions are given by (12). The behavior of
the eigenmodes φn critically depends on the choice of the wave number k. When k(β) is
real then φn(x, k(β)) is a bounded function of x and the eigenvalue β is said to belong to a
spectral band. On the other hand, if k(β) is imaginary, then β is said to belongs to a spec-
tral gap. In optics, the spectrum β(k) is referred to as photonic band gap and is determined
by numerically solving (13) subject to periodic boundary condition on the primitive cell of
the lattice. Due to time-reversibility, the band gap structure is symmetric around k = 0, i.e.,
βn(k) = βn(−k).

In general, one-dimensional periodic potentials have infinitely many gaps (in optics it is
referred to as complete band gap). Finally, the Floquet-Bloch functions φn(x, k) satisfy the
orthogonality relation:

∫ +∞

−∞
φm(x, k′)φn(x, k)dx = δnmδ(k − k′). (15)

Complex Potentials In this case (Im[V (x)] 
= 0) the Floquet-Bloch theorem is valid and
the corresponding eigenfunctions of the eigenvalue problem (8) are given by (12) with com-
plex valued un(x, k) satisfying (13). However, since the spectral problem (8) is not self-
adjoint, the band structure is not generally real. On the other hand, the P T symmetry condi-
tion (2) provides useful clues on the reality of the spectrum [2, 15, 16, 23, 24]. In particular,
it implies that if [βn(k),φn(x, k)] is a spectral pair of the eigenvalue (8) with complex βn(k)

so is [λ̄n(k), φ̄n(−x,−k)]. Therefore, as we shall analytically show later, the Floquet-Bloch
modes no longer satisfy the orthogonality condition (15), but a different relation of the fol-
lowing type: ∫ +∞

−∞
φm(−x,−k′)φn(x, k)dx ∝ δnmδ(k − k′). (16)

3.2 Band-Gap Structure

For illustration purposes we assume the periodic P T potential of the form

V (x) = 4[cos2 x + iV0 sin(2x)], (17)

with period D = π for both real and imaginary component and V0 is a real constant that,
without loss of generality, could be chosen to be non negative. The real (solid line) and the
imaginary part (dotted line) of the V (x) potential for V0 = 0.3 are depicted in Fig. 1(a).
We emphasize once more, that the condition V (x) = V̄ (−x) satisfied by this potential is
a necessary but not a sufficient condition for the reality of the spectrum. By using spectral
methods we numerically determine the existence of a P T threshold (V th

0 ), below which all
the propagation eigenvalues for every band and every Bloch wave number k are real. Above
this P T threshold, an abrupt phase transition [4–7] occurs and as a result the spectrum
is partially complex in spite of the fact that V (x) = V̄ (−x) is still valid. For the specific
potential given in (17), we find a threshold of V th

0 = 0.5. In other words, for V0 < 0.5, the
band-structure is entirely real while for V0 > 0.5 it becomes partially complex. Figure 1(b)
illustrates the first two bands of this potential for two cases, i.e. when V0 = 0.3 (solid-dotted
line) and V0 = 0.5 (solid line). Note that below V th

0 all the forbidden gaps are open whereas
at the threshold V th

0 = 0.5 the first band gap at the edges of the Brillouin zone k = ±1 closes,
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Fig. 1 (Color online) (a) Real (solid line) and imaginary (dotted line) component of a P T symmetric lattice
with V0 = 0.3. (b) The real part of the first two bands of the same potential for different values of gain/loss
amplitude V0 = 0.3 (solid-dotted lines) and V0 = 0.5 (solid lines). (c) Real part of the first two bands for
V0 = 0.85, and (d) the corresponding imaginary parts of the bands presented in (c)

as shown in Fig. 1(b). Moreover, when V0 exceeds this critical value the first two bands
start to merge together forming an oval-like double-valued band with an associated complex
spectrum. The real as well as the imaginary parts of such a band are depicted in Figs. 1(c)
and 1(d), respectively when V0 = 0.85. These figures show that the propagation eigenvalues
are entirely real in the double valued regions, while along the overlapped sections they
come in complex conjugate pairs. Note that the spectrum becomes complex after passing the
P T threshold, starting from the lowest bands. More specifically, the first two bands form a
double-valued band after the threshold while the rest of the bands have real eigenvalues. For
higher values of V0, a secondary threshold exists above of which the third and fourth bands
merge together forming another double-valued structure. This process repeats as the value
of V0 further increases.

The peculiar characteristics of the corresponding Floquet-Bloch (FB) modes are also
of importance. Figure 2 shows the FB modes of the first band, for Bloch wave numbers
k = −1,±0.5,0. We also plot the structure of these modes below V0 = 0.49 (Fig. 2(a)–(c))
and above V0 = 0.85 (Fig. 2(d)–(f)) the P T threshold. Unlike real potentials, the eigenfunc-
tions have no zero nodes at k = ±π/D = ±1 (edge of the Brillouin zone), as we can clearly
see in Fig. 2(a). Above the phase transition point, the FB modes with the same eigenvalue
βn(k) form complex conjugate pairs, the same way the first two bands do. One of these
modes at k = −1 of the first band is shown in Fig. 2(d), where the spatial shift towards the
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Fig. 2 (Color online) Normalized intensity profiles of FB modes of the first band of a P T symmetric lattice
for different values of V0, and Bloch wave numbers k. Below the P T threshold for V0 = 0.49, FB modes
with the following Bloch momentum are presented (a) k = −1, (b) k = 0.5 (dashed line), k = −0.5 (solid
line), (c) k = 0. Above the phase transition point for V0 = 0.85, we have (d) k = −1, (e) k = 0.5 (FB mode
of the second band) (dashed line), k = −0.5 (solid line), (f) k = 0. In all cases, the real part of the periodic
potential (solid-dotted) line is schematically depicted

loss region is apparent. The complex conjugate pair of this FB mode belongs to the second
transmission band and is spatially shifted towards the gain region. An example of such a
FB mode of the second band is depicted in Fig. 2(e) for the case of k = 0.5. We point out
that, unlike in real lattices, a FB mode with Bloch wave number k is not equal to the com-
plex conjugate of the FB mode at −k, i.e., φn(x, k) 
= φ̄n(x,−k). For this reason we say
that a band structure in a parity-time symmetric potential is non-reciprocal, with respect to
the Bloch momentum k. Bloch modes corresponding to ±k wave numbers have completely
different field profiles, as Figs. 2(b) and 2(e) demonstrate. We emphasize that these pecu-
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liar features are a direct consequence of the non-orthogonality of the P T Floquet-Bloch
functions. In fact, the usual orthogonality condition (15) (that is valid in real crystals) is no
longer observed in P T symmetric lattices. This skewness of the FB modes is an inherent
characteristic of P T symmetric periodic potentials and has important consequences on their
algebra. Thus a more convenient reciprocal basis has to be developed for the inner prod-
uct. This new inner product should be capable of projecting any input wavefunction on the
skewed FB eigenmode basis.

A mathematical explanation for the 1/2 threshold for P T symmetry breaking first found
in [32, 33, 38] has been recently proposed by Midya et al. [35].

4 Orthogonality of FB Modes in PT -Periodic Potentials

In this section we discuss important issues related to orthogonality of FB modes in P T
symmetric periodic potentials [33].

4.1 Inner Products

Let us start by rewriting (8) in the form

∂2
xφn(x, k) + V (x)φn(x, k) = βn(k)φn(x, k), (18)

where φn(x, k) is a FB mode given by (12) and V (x) satisfy condition (2). In standard
Hermitian optics (when V (x) is real) two different FB modes, φn(x, k),φm(x, k′) satisfy the
orthogonality relation (15) with respect to the inner product

〈f,g〉 =
∫ +∞

−∞
f̄ (x)g(x)dx, (19)

where f (x) and g(x) are two complex-valued functions. The question naturally arises as to
how one could define an inner product for a complex P T -symmetric lattice. In order to an-
swer this question we first have to obtain the conjugate pairs associated with the Lagrangian
corresponding to (18)

L1 = [∂xφn(x, k)][∂xφ̄n(−x, k)] − [V (x) − βn(k)]φn(x, k)φ̄n(−x, k), (20)

where ∂xφn(x, k) ≡ ∂φn(x, k)/∂x. As a result the conjugate pairs of the (18) are, φn(x, k),
φ̄n(−x, k) and the corresponding new inner product should be defined as

〈〈f (x, k), g(x, k)〉〉 =
∫ +∞

−∞
f̄ (−x, k)g(x, k)dx. (21)

Since the Floquet-Bloch theorem is valid for all periodic potentials (real and complex), it
follows that every FB mode φn(x, k) = un(x, k) exp(ikx) where un(x, k) = un(x + D,k)

satisfy (13). The Lagrangian corresponding to (13) is given by

L2 = [∂xun(x)] [∂xūn(−x,−k)] − [
V (x) − k2 − βn (k)

]
un(x, k)ūn(−x,−k)

+ 2ikun(x, k)∂xūn(−x,−k). (22)
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Scrutinizing (22) shows that the conjugate pairs of (13) are now different. In particular they
are given by un(x, k), ū(−x,−k) and the corresponding inner product is defined by,

{f (x, k), g(x, k)} =
∫ +∞

−∞
f̄ (−x,−k)g(x, k)dx. (23)

It is important to note that, for the conjugate variable, not only do we have to invert the
spatial coordinate x, but the Bloch wave number k must be inverted as well. Since this inner
product is different than that employed in a real lattice, the orthogonality condition is also
expected to take a different form and must be systematically derived. As mentioned before,
this is accomplished by first considering the orthogonality in a single cell, a finite lattice,
and at the end examine the case of an infinite lattice. In all these three cases we refer always
to the eigenvalue problem of (13).

4.2 Orthogonality in a Single P T -Cell

The goal of this paragraph is to derive the orthogonality condition in one individual cell of
the periodic potential defined by 	 ≡ [−D/2,D/2]. Let us consider two FB modes un(x, k),
um(x, k) belonging to different bands (n 
= m) but having the same wave number k. We also
assume that the potential V (x) is used below the P T -phase transition point, and therefore
the eigenvalue spectrum is entirely real. Then from (13) after some algebra, we finally get
the orthogonality condition over a single cell in a periodic potential, that is:

∫
	

ūm(−x,−k)un(x, k)dx = 0, n 
= m. (24)

Next we define the normalized FB modes as


n(x, k) ≡ φn(x, k)√
ckn

, Ukn(x) ≡ un(x, k)√
ckn

, ckn ≡
∫

	

φ̄n(−x,−k)φn(x, k)dx. (25)

It is easy to see that every FB function has a unique normalization coefficient ckn depending
on the band index n and the Bloch wave number k. In general ckn are complex numbers and
satisfy the symmetry relation ckn = c̄−kn. Based on this normalization, (24) leads to the final
orthonormality condition:

∫
	


̄m(−x,−k)
n(x, k)dx = dknδn,m, (26)

where

dkn ≡
{

1, when ckn ∈ C or ckn > 0
−1, when ckn < 0

and δn,m is the Kronecker delta. As stated before, it has been numerically verified that for all
FB-modes below the P T phase-transition point ckn 
= 0. In other words no self-orthogonal
FB modes exist in our problem [20] and the above normalization is indeed well defined.

4.3 Orthogonality in Infinite P T -Lattices

Here we derive the orthonormality condition of two FB-modes in a P T -symmetric infinite
optical lattice. In order to do this, we calculate the corresponding inner product in a finite
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lattice of N cells and then take the limit N → ∞. For this purpose we consider a finite
lattice with an odd number of waveguides N = 2N ′ + 1 where N ′ is the number of cells to
the left and to the right of the central element. The width of the array is given by L = ND

where D is the lattice constant. First, we reduce the calculation of the inner product to an
integral over just one (the central) cell, as opposed to over the entire lattice. In particular, we
split the integral in every individual cell in the following fashion:

∫
finite

lattice


̄m(−x,−k′)
n(x, k)dx

=
∫

finite
lattice

Ūm(−x,−k′)Un(x, k) exp
[
i
(
k − k′)x

]
dx

=
∫ −(N ′−1)D−D/2

−N ′D−D/2︸ ︷︷ ︸
−N ′ cell

+· · · +
∫ −D/2

−3D/2︸ ︷︷ ︸
−1 cell

+
∫ D/2

−D/2
U ∗

−k′m (−x)Ukn (x) ei�kxdx

︸ ︷︷ ︸
0(central)cell

+
∫ 3D/2

D/2︸ ︷︷ ︸
1 cell

+· · · +
∫ N ′D+D/2

(N ′−1)D+D/2︸ ︷︷ ︸
N ′ cell

,

where we used �k ≡ k − k′ and 
n(x, k) = Un(x, k) exp(ikx). Given the fact that un(x, k)

is periodic with period D, every term in the summation can be reduced to an integral over
the central cell by using the change of variables x = x ′ − pD with p = ±1,±2, . . . ,±N ′:

∫
finite

lattice


̄m(−x,−k′)
n(x, k)dx =
∫ D/2

−D/2
Ūm(−x,−k′)Un(x, k)ei�kxdx ·

[
N ′∑

j=−N ′
ei�kDj

]
.

(27)
Notice that the sum of the above geometric series is well-known in Fourier analysis as the
Dirichlet kernel

DN(x) ≡
N∑

m=−N

eixm, x ∈ R,

and thus the integral in (27) can be written as:

∫
finite

lattice


̄m(−x,−k′)
n(x, k)dx = DN ′(�kD)

∫ D/2

−D/2
Ūm(−x,−k′)Un(x, k)ei�kxdx. (28)

In order to derive the orthogonality condition in an infinite lattice we have to evaluate (28)
in the limit N ′ → ∞:
∫ +∞

−∞

̄m(−x,−k′)
n(x, k)dx = lim

N ′→∞
{DN ′(�kD)}

∫ D/2

−D/2
Ūm(−x,−k′)Un(x, k)ei�kxdx.

(29)
From the Poisson summation formula one can show that the Dirichlet kernel becomes a
comb of equally spaced Dirac delta functions δ(x), namely:

lim
N ′→∞

{DN ′(x)} = 2π

+∞∑
n=−∞

δ(x − 2πn).
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Therefore the inner product over the whole infinite lattice takes the form:

∫ +∞

−∞

̄m(−x,−k′)
n(x, k)dx = 2π

+∞∑
q=−∞

δ(�kD −2πq)

∫ D/2

−D/2

̄m(−x,−k′)
n(x, k)dx.

(30)
Since we restrict the values of the Bloch wave number only in the first Brillouin zone (re-
duced zone scheme), i.e. −π/D ≤ k < π/D it follows that −2π < �kD < 2π . From the
comb series of (30), we find that only the central term (for q = 0) remains. This means that

∫ +∞

−∞

̄m(−x,−k′)
n(x, k)dx = 2πδ(�kD)

∫ D/2

−D/2

̄m(−x,−k′)
n(x, k)dx, (31)

and since δ(ak) = δ(k)/|a|, we finally reduced the inner product calculation to one individ-
ual cell:

∫ +∞

−∞

̄m(−x,−k′)
n(x, k)dx = 2π

D

[∫ D/2

−D/2

̄m(−x,−k′)
n(x, k)dx

]
δ(k − k′). (32)

By combining this last relation with the orthonormality condition in one individual cell given
by (26), we arrive at the orthonormality condition in an infinite P T -lattice:

∫ +∞

−∞

̄m(−x,−k′)
n(x, k)dx = 2π

D
dknδn,mδ(k − k′). (33)

It is worth mentioning that this orthonormality condition is very different than the usual one
used for real periodic potentials. Here both the spatial coordinate x and the Bloch wavevector
k must be reflected around the corresponding axis of symmetry.

4.4 Projection Coefficients in an Infinite P T -Lattice

It is well known that any function can always be decomposed on a complete basis. This
process is straightforward if the basis happens to be orthogonal. If, on the other hand, the
eigenvectors are skewed as in the case of P T lattices, this decomposition becomes more
involved. In this section we analyze this problem for infinite P T lattice and we derive and
an expression for the projection coefficients.

Let us assume an infinite optical P T lattice with an arbitrary input field H(x). This
profile can be expressed as a linear superposition of the new orthonormal basis {
n(x, k)}
associated with the array and the projection coefficients An(k) of this expansion can be
uniquely determined. More specifically, any beam profile H(x, z) can be written as a sum-
mation of the Floquet-Bloch modes of all bands and of all Bloch wave numbers belonging
to the first Brillouin zone. This can be done via the eigenmode expansion

H(x, z) =
+∞∑
n=1

∫ π/D

−π/D

An(k)
n(x, k) exp[iβn(k)z]dk. (34)

By multiplying both sides with the corresponding conjugate pair 
̄m(−x,−k′) and by ap-
plying the orthonormality condition of (33), we get:

∫ +∞

−∞

̄m(−x,−k′)H(x, z)dx = 2π

D

+∞∑
n=1

dk′nδn,mAn(k
′) exp[iβn(k

′)z], (35)
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and the projection coefficients are given by the formula (obviously d−1
kn = dkn):

An(k) = D

2π
dkn exp[−iβn(k)z]

∫ +∞

−∞

̄n(−x,−k)H(x, z)dx. (36)

The completeness of the FB mode basis is directly related to the Parseval’s identity (different
from that in real lattices):

Q = 2π

D

+∞∑
n=1

∫ π/D

−π/D

dknAn(k)Ān(−k)dk, (37)

where we define the quasi-power as Q ≡ ∫ +∞
−∞ H(x, z)H̄ (−x, z)dx and the integrated power

as P ≡ ∫ +∞
−∞ H(x, z)H̄ (x, z)dx. It is noteworthy to highlight that since the projection coef-

ficients An(k) are independent of z, it is easy to understand from (37) that the quasi-power
Q is a conserved quantity in a P T -lattice, while the usual power P is not. Moreover, it is
straightforward to see from (36) that in generalAn(k) 
= Ān(−k) and the Parseval’s iden-
tity in a P T -lattice is not in any sense a trivial generalization of the one we have in a real
periodic potential [40]:

P = 2π

D

+∞∑
n=1

∫ π/D

−π/D

|An(k)|2dk. (38)

The above results are derived for infinite P T optical lattices. However, from the computa-
tional point of view, one always deals with a finite domain and thus it is useful to reformulate
the above analysis for finite lattices with periodic boundary conditions and derive the corre-
sponding relations.

4.5 Orthonormality and Projection in a Finite P T -Lattice

In this paragraph we analytically examine the FB mode properties of a finite P T symmetric
periodic potential where periodic boundary conditions are imposed at the endpoints of the
lattice. This approach provides a straightforward numerical implementation and calculation
of the corresponding projection coefficients. The singularities of Dirac functions in the or-
thogonality conditions of (33) do not exist anymore and are replaced by a Kronecker delta.
In the limit N → ∞ the results approach that of the associated infinite lattice. Note that this
methodology is widely used in the study of periodic crystals in solid state physics.

Let us assume a finite lattice of N number of cells, with L = ND . We here apply periodic
boundary conditions at the end points of the lattice 
n(−L/2, k) = 
n(L/2, k). By using
the Floquet-Bloch theorem and the periodicity of every FB mode we get exp(ikL) = 1 ⇒
kj = (2πj)/L, j = 0,±1,±2, . . . . But these discrete values of the Bloch wave number must
belong to the first Brillouin zone k ∈ [−π/D,π/D). This leads to the following results:
k = 2π

L
[−N ′ − N ′ + 1 · · · − 1 0 1 · · · N ′ − 1 N ′], for odd number of cells N = 2N ′ + 1,

and k = 2π
L

[−N
2 − N

2 +1 · · · −1 0 1 · · · N
2 −2 N

2 −1] for even number of cells. It is easy to
see that in the first case where N is odd, the discrete k-spectrum is symmetric around k = 0
and k ∈ (−π/D,π/D), whereas in the case of N being even the k-spectrum is asymmetric
by one point at k = −π/D and k ∈ [−π/D,π/D). This asymmetry in the case of even
number of cells is problematic regarding the orthogonality conditions, since in this case the
FB mode 
n(x,−π/D) does not have a corresponding conjugate pair 
̄n(−x,π/D). For
this reason we choose a finite lattice of odd number of cells N = 2N ′ + 1, with a symmetric
k-spectrum.
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The relation between the P T -inner product of two different FB modes in a finite lattice
(with no imposed periodic boundary conditions) with that in a single cell has been already
presented in (28). Here we study how the discretization of Bloch momentum k (due to
the imposed boundary conditions) affects this relation. In order to do that we have first
to calculate the Dirichlet kernel DN ′(�kD) of the discrete Bloch wave number k = 2π

L
×

[−N ′ − N ′ + 1 · · · − 1 0 1 · · · N ′ − 1 N ′]. The Dirichlet kernel is given by the following
relation:

DN ′ (�kD) =
{

sin[(N ′+ 1
2 )�kD]

sin(�kD/2)
, when �kD 
= 0,±2π,±4π, . . .

2N ′ + 1, otherwise.

For the above discretization of the Bloch momentum k, it is straightforward to show that
�kD = 2πs/N , where the integer s takes the values −2N ′ ≤ s ≤ 2N ′. Since N = 2N ′ +
1 > 2N ′ it follows that �kD becomes zero only for s = 0 and is always true that �kD 
=
0,±2π,±4π, . . . for any other non-zero value of the s integer. So when �kD = 0, then
DN ′(0) = 2N ′ + 1 from the above formula. On the other hand, when �kD 
= 0 (with the
sin(�kD/2) denominator well defined), it is easy to see that sin[(N ′ + 1

2 )�kD] = 0. By
combining these two last results one can arrive at the conclusion DN ′(�kD) = Nδk,k′ . By
substituting this relation into (28), and applying the orthonormality condition in a single cell
given by (26), we get the orthonormality condition between two FB modes of different bands
with different Bloch momenta in a finite lattice with imposed periodic boundary conditions,
that is: ∫

finite
lattice


̄m(−x,−k′)
n(x, k)dx = Ndknδn,mδk,k′ . (39)

One convenient normalization for the FB modes is given by ϕn(x, k) = 
n(x, k)/
√

N . As in
the case of an infinite lattice, an arbitrary optical beam f (x, z) can be expanded in terms of
the finite number of FB modes (the number of FB modes is equal to the number of the cells
of the lattice and also equal to the dimension of the discrete Bloch wave number k-matrix)
as

f (x, z) =
+∞∑
n=1

N ′∑
m=−N ′

An,kmϕn(x, k) exp[iβn(km)z], (40)

where An,km are the projection coefficients. By applying the orthonormality condition of
(7), one can directly derive formulas for the projection coefficients and for the Parseval’s
identity. These are given by the following (8) and (9), respectively.

An,km = dnkm exp[−iβn(km)z]
∫

finite
lattice

ϕ̄n(−x,−k)f (x, z)dx, (41)

∫
finite

lattice

f̄ (−x, z)f (x, z)dx =
+∞∑
n=1

N ′∑
m=−N ′

dnkmAn,kmĀn,−km . (42)

The advantage of this approach is that all the relations involved can be numerically checked
since the spectrum in the k-space is discrete and has finite number of FB-modes. This in
turn allows us to express any beam profile as a linear superposition of FB modes and thus
determine the energy content of this beam in every transmission band. As we will see, this
information is useful in explaining the dynamical behavior and propagation characteristics



Int J Theor Phys (2011) 50: 1019–1041 1033

of optical beams in P T -periodic potentials. At this point, we like to note that all the numer-
ical results of the next two paragraphs regarding projection coefficients have been obtained
by using a finite lattice.

5 Beam Dynamics and Power Oscillations in PT Optical Lattices

The most interesting aspects associated with P T symmetric lattices are revealed during
dynamic beam evolution. Let us consider a wide (covers several channels) Gaussian beam
at an arbitrary angle of incidence. Because of the non-orthogonality of the associated FB
modes and the physical non-reciprocity of the lattice, we are expecting asymmetric diffrac-
tion patterns, such as double refraction and secondary emissions. For the specific periodic
P T potential V (x) = 4[cos2(x) + iV0 sin(2x)] that we consider in this paper, we examine
the spatial evolution of a wide incident beam. In Figs. 3(a), 3(b) we can see the intensity dis-
tributions for two different angles of incidence, when V0 = 0.49. The first one in Fig. 3(a) the
diffraction pattern has a crescent-like form and is symmetric around x = 0 axis. On the other
hand, in Fig. 3(b) the beam is splitting into three different components and the evolution is
highly asymmetric. For a better understanding, we have calculated the beam’s “energy con-
tent” for various bands. By applying (36), the stationary projection coefficients |An(k)|2 can
be numerically evaluated for the first three bands (where most of the “energy” of the beam
is distributed). In Figs. 3(c), 3(d) the corresponding projection coefficient distributions for
the input field of Figs. 3(a), 3(b), respectively, are illustrated. In Fig. 3(c) the “energy” dis-
tribution for the first two bands is symmetric with respect to the center of the Brillouin zone
k = 0, and this is the reason for the symmetry of the resulted diffraction pattern of Fig. 3(a).
Notice also that both bands have an equal contribution. For the input beam of Fig. 3(b), the
projection coefficients for the first three bands are highly asymmetric. We can see that the
most of the “energy” of the beam is distributed along the second band. The first and the third
bands have similar secondary contributions. By taking this plot into account, one can easily
explain the splitting of the beam in three new beams. The main left lobe is a result of the
second band and the other two of the first and third band.

As we mentioned in a previous paragraph, the power P is not a conserved quantity
in a P T symmetric optical lattice. So the purpose here is to understand the behavior of
power with respect to the propagation distance z. This can be done analytically by calculat-
ing the integrated power with respect to the usual inner product defined in (19). The non-
orthogonality of the involved FB modes plays a crucial role here. We can calculate the power
of an arbitrary input beam, by expressing it as a linear superposition of non-orthogonal FB
modes. The resulted formula for the integrated power P is:

P = 2π

D

+∞∑
n=1

∫ π/D

−π/D

|An (k)|2
(∫ +D/2

−D/2
|
kn (x)|2 dx

)
dk

+ 2π

D

+∞∑
n=1
n
=m

+∞∑
m=1

∫ +π/D

−π/D

AnA
∗
m

(∫ +D/2

−D/2

̄km (x)
kn (x) dx

)
exp

[
i�βnm (k) z

]
dk,

(43)

where �βnm(k) ≡ βn(k) − βm(k). The first term represents the usual power-spectral sum-
mation that appears in real lattice. Under the usual inner product and orthogonality relations
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Fig. 3 (Color online) Peculiar diffraction patterns in a P T symmetric lattice under wide beam excitation, for
V0 = 0.49 (below the phase transition point). Intensity evolution of two different input beams, which lead to
(a) crescent-like pattern, and (b) 3-beam splitting. The corresponding projection coefficient diagrams for these
two input beams are depicted for the (c) first band (solid line), second band (dotted line) and (d) first band
(dashed-dotted line), second band (dotted line), third band (solid line), respectively. The integrated power
oscillations, with respect to the propagation distance, (e), (f) for the input beams of (a), (b), respectively

in a real lattice, the second term of (43) is zero and
∫

	
|
n(x, k)|2dx = 1. So the above rela-

tion is reduced to the Parseval’s identity in a real lattice. In a P T lattice, the FB modes are
not orthogonal and hence some interference effects are expected. This interference between
“skewed” FB modes is described by the second term of (43). Because of this term the power
P oscillates in z. The oscillations are not periodic in principle. The fact that the integrated
power oscillates with distance is even more surprisingly given the fact that the eigenvalue
spectrum is entirely real (below P T -phase transition point). In order to develop a better
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Fig. 4 Intensity evolution of wide beams exciting a P T lattice at angle θ when V0 = 0.45 and (a) θ = 2°,
(b) θ = −2°

understanding of this behavior, let us consider two specific examples of power oscillations
in a P T -periodic potential of the form V (x) = 4[cos2(x) + iV0 sin(2x)], with V0 = 0.49,
that is excited by a wide optical beam. More specifically, we are interested in two different
cases, the first of which is when the input beam profile leads to strong power oscillations
and second is exactly the opposite. In both situations, the potential parameters are kept fixed.
The intensity evolution patterns of these two beams are illustrated in Fig. 3(a) and Fig. 3(b),
respectively. Notice that these patterns can be spatially symmetric or asymmetric, depending
on their modal “energy” distributions among the various bands. Figure 3(e), and Fig. 3(f)
depict the power oscillations of the first (Fig. 3(a)) and the second beam (Fig. 3(b)).

A direct consequence of the “skewness” of FB modes is non-reciprocity. Figure 4 shows
beam propagation in a P T lattice when excited by a wide beam at ±θ angle of incidence
(in this case 2° degrees). Note that the two diffraction patterns are different and hence, light
propagating in P T symmetric arrays can distinguish left from right. This is another general
property of such pseudo-Hermitian optical systems.

Another interesting feature of wave propagation in P T symmetric periodic potentials is
the existence of phase dislocations in the evolution pattern. More specifically, we examine
the diffraction of a wide tilted Gaussian beam propagating in the same lattice define before.
Figures 5(a), 5(b) show the intensity and the phase of the diffracted field, respectively. When
the beam splits in two different parts (Fig. 5(a)), then the field at this point is zero. Conse-
quently, the phase is undetermined and singularities appear. In the specific case, we have
two phase dislocations with the same “topological charge” [Fig. 5(b)]. On the other hand,
when the tilt of the beam slightly changes we get similar diffraction pattern (Fig. 5(c)), but
the “topological charge” of the phase singularities has opposite sign than that in Fig. 5(b)
[Fig. 5(d)]. It is noteworthy here that such characteristics and diffraction patterns have no
analogue whatsoever in real Hermitian optical lattices.

6 Wave Propagation in Nonlinear PT -Symmetric Periodic Media

In this section we study optical wave propagation in a self-focusing Kerr nonlinear P T sym-
metric potential, in which case, the beam evolution is governed by the following normalized
nonlinear Schrödinger-like equation,

i
∂ψ

∂z
+ ∂2ψ

∂x2
+ V (x)ψ + g|ψ |2ψ = 0, (44)
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Fig. 5 (Color online) Diffraction patterns under wide beam excitation of a P T symmetric lattice for
V0 = 0.49. The evolution of (a) the intensity and (b) the phase of the diffracted field, with respect to the
propagation distance are shown. Notice the two phase singularities at the points where the field is zero. The
phase at these points is undetermined. (c) Intensity pattern of a different input beam, and (d) phase of the
corresponding propagating field (c). The phase singularities here have “topological charge” of opposite sign
than these illustrated on (b)

where ψ is proportional to the electric field envelope, z is a scaled propagation distance and
g = +1 corresponds to a self-focusing nonlinearity while g = −1 to a defocusing one. We
assume that the potential V (x) is a complex valued function of the real variable −∞ < x <

+∞, P T symmetric and satisfy condition (2). Note that the quasi power Q(z) defined by
(4) evolve according to:

i
dQ

dz
= −g

∫ +∞

−∞
ψ(x, z)ψ̄(−x, z)[|ψ(x, z)|2 − |ψ(−x, z)|2]dx, (45)

whereas the total optical power P (z) follows that of (6). Stationary soliton solutions to (44)
are sought in the form

ψ(x, z) = �(x,λ)eiλz, (46)

where �(x,λ) is the nonlinear eigenmode (which in general is a complex valued function)
and λ is the corresponding real propagation constant (nonlinear eigenvalue). Then �(x,λ)

satisfies the nonlinear eigenvalue problem

[
d2

dx2
+ V (x) + g|�(x,λ)|2

]
�(x,λ) = λ�(x,λ). (47)
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Equation (47) is supplemented with the following boundary conditions: �(x,λ) → 0 as
|x| → ∞.

6.1 Nonlinear Localized Modes in a Single P T Complex Potential

Before we consider light self-trapping in complex lattices, it is important to first under-
stand nonlinear optical beam dynamics in a single P T complex potential. For illustration
purposes, we assume a Scarff II potential, e.g.:

V (x) = V0 sech2(x) + iW0 sech(x) tanh(x), (48)

with V0 and W0 being the amplitudes of the real and imaginary part. Notice that the cor-
responding linear problem associated with the potential of (48) exhibits an entirely real
spectrum provided that, W0 ≤ V0 + 1/4. Thus for a fixed value of V0, there exists a thresh-
old for the imaginary amplitude W0. Above this so-called P T threshold, a phase transition
occurs and the spectrum enters the complex domain. Interestingly enough, even if the Scarff
potential of (48) has crossed the phase transition point (its spectrum is complex), nonlinear
states can still be found with real eigenvalues. In other words, the beam itself can alter the
amplitude of the refractive index distribution through the optical nonlinearity. Thus for a
given W0, this new effective potential nonlinearly shifts the P T V0 threshold and in turn
allows nonlinear eigenmodes with real eigenvalues to exist. In contrast, at lower power lev-
els the parity-time symmetry cannot be nonlinearly restored and hence remains broken. It is
important to note that (47) with P T potential (48) admits an exact solution of the form

�(x,λ = 1) =
√

2 − V0 + W 2
0 /9 sech(x) exp

[
iW0 tan−1(sinh(x))

3

]
. (49)

7 Two Dimensional PT -Symmetric Potentials

In this section we study linear and nonlinear wave propagation in two-dimensional (2D) P T
symmetric potentials. In particular we discuss the corresponding band structure and its de-
pendence on the potential parameters, power flow and the formation of localized structures.
We end this section by giving some two-dimensional periodic exact solutions to the P T
invariant two-dimensional NLS equation.

7.1 Linear Properties of P T Waveguide Arrays

Linear wave propagation in two-dimensional P T symmetric potentials is governed by the
2D linear P T invariant Schrödinger equation that is given as a simple generalization of (1)
to 2D:

i
∂ψ

∂z
+ ∇2ψ + V (x, y)ψ = 0, (50)

where, as in Sect. 3, the complex valued ψ(x, y, z) represents the electric field amplitude,
z the propagation distance, x, y the spatial transverse coordinates, and V (x, y) the complex
periodic optical potential with period D in both x and y; ∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-
dimensional Laplacian and the optical periodic potential V (x, y) satisfies the P T symmetry
requirement:

V (x, y) = V̄ (−x,−y). (51)
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Fig. 6 Two-dimensional bandstructures associated with V (x, y), for (a) V0 = 0.45, and (b) V0 = 0.6

To understand the properties of a two-dimensional periodic P T structure we first analyze
its corresponding band structure. To do so, we look for solutions of the form

ψ(x, y, z) = φ(x, y) exp(iβz), (52)

where β is the eigenvalue (propagation constant) and φ(x, y) is the eigenmode satisfying

[∇2 + V (x, y)]φ = βφ. (53)

Using the Floquet-Bloch theorem one can readily write down the solutions to (53) as

φ(x, y, �k) = u(x, y, �k)ei(kxx+kyy), (54)

u(x + D,y + D, �k) = u(x, y, �k), (55)

where �k ≡ �k(β) = (kx(β), ky(β)) and u(x, y, �k) satisfies

[
(∇ + i�k)2 + V (x, y)

]
u(x, y, �k) = β(�k)u(x, y, �k), �k ∈

[
− π

D
,
π

D

)
×

[
− π

D
,
π

D

)
. (56)

Equation (56) is supplemented with periodic boundary condition in both x and y, i.e., con-
dition (55). In the following examples we consider the complex P T symmetric potential

V (x, y) = 4{cos2(x) + cos2(y) + iV0[sin(2x) + sin(2y)]}. (57)

Numerical analysis reveals that the threshold in this separable 2D case is again V th
0 = 0.5.

The real part of the band structure corresponding to this potential is shown in Fig. 6 for
two cases, below and above threshold (V0 = 0.45 and V0 = 0.6). Again below threshold
the eigenvalue spectrum is real while at V th

0 = 0.5 the two bands collide at the edges of
the Brillouin zone, Fig. 6(a). On the other hand, above the phase transition point (at V0 =
0.6) the first two bands merge thus forming a two-dimensional oval double-valued surface
(upon which all the propagation constants are real) attached to a 2D membrane where the
complex conjugate eigenvalues reside (see Fig. 6(b)). The double refraction process in such
2D pseudo-Hermitian structures V0 = 0.45 is shown in Fig. 7(a) when the system is excited
by a normally incident wide 2D Gaussian beam. As opposed to the familiar 2D discrete
diffraction pattern occurring in real lattices (Fig. 7(b) with V0 = 0), in the P T case, two
significant secondary lobes are produced only in the first quadrant. This is of course another
manifestation of parity-time symmetry.
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Fig. 7 Output intensity profiles: (a) for the 2D P T potential V (x, y) with V0 = 0.45, and (b) for the corre-
sponding real lattice V0 = 0

7.2 Two-Dimensional P T Lattice Solitons

In this section, we discuss the formation of P T lattice solitons in the presence of a two-
dimensional periodic potential and Kerr self-focusing nonlinearity. In this case, (50) be-
comes,

i
∂ψ

∂z
+ ∇2ψ + V (x, y)ψ + |ψ |2ψ = 0, (58)

where again the periodic potential V (x, y) obey the P T symmetry requirement (51). Sta-
tionary lattice soliton solutions to (58) are sought in the form ψ(x, y, z) = φ(x, y,λ)×
exp(iλz), where φ(x, y,λ) is the nonlinear eigenmode and λ is the corresponding real
propagation constant. In this case φ(x, y,λ) satisfies the nonlinear eigenvalue problem
∇2φ +V (x, y)φ+|φ|2φ = λφ, subject to the boundary condition: For fixed λ,φ(x, y,λ) →
0 as x2 + y2 → +∞. Before computing soliton solutions, we first solve the corresponding
linear eigenvalue problem and determine the band structure. Proceeding in a similar fashion
as outlined in Sect. 7.1, we have numerically determined the band structure corresponding
to the periodic potentials V (x, y) = cos2(x)+cos2(y)+ iW0[sin(2x)+ sin(2y)] for the case
W0 = 0.3. Localized solutions to (58) can be readily constructed by extending the spectral
renormalization scheme [1] to two dimensions.

A two-dimensional P T symmetric lattice soliton with eigenvalues within the semi-
infinite gap can be numerically be found. At low intensities, the nonlinearity is not strong
enough and hence this beam asymmetrically diffracts in this complex lattice. At soliton
power levels however, this nonlinear wave propagates in a stable fashion.

8 Conclusions

A review of recent results regarding P T -symmetric Optics was presented. In particular, lin-
ear and nonlinear wave propagation in P T symmetric optical waveguide arrays has been
thoroughly studied. This was done by utilizing the formal (mathematical) analogy between
the paraxial wave equation of diffraction and the Schrödinger equation. In these studies it
was shown that optical synthetic materials can lead to altogether new behavior that is im-
possible in Hermitian optical systems. Such effects include double refraction, power oscilla-
tions, eigenfunction unfolding and non reciprocal diffraction patterns. By using the Floquet-
Bloch theorem, we were able to construct the band structure of a P T symmetric one and
two-dimensional optical potentials and identify their point of P T symmetry breaking. Using
the spectral renormalization method, we were also able to numerically construct a family of
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P T lattice solitons with propagation constant (or nonlinear eigenvalue) residing in the gap
of the band structure.
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