6,213 research outputs found

    Non-linear screening of external charge by doped graphene

    Get PDF
    We solve a nonlinear integral equation for the electrostatic potential in doped graphene due to an external charge, arising from a Thomas-Fermi (TF) model for screening by graphene's π\pi electron bands. In particular, we study the effects of a finite equilibrium charge carrier density in graphene, non-zero temperature, non-zero gap between graphene and a dielectric substrate, as well as the nonlinearity in the band density of states. Effects of the exchange and correlation interactions are also briefly discussed for undoped graphene at zero temperature. Nonlinear results are compared with both the linearized TF model and the dielectric screening model within random phase approximation (RPA). In addition, image potential of the external charge is evaluated from the solution of the nonlinear integral equation and compared to the results of linear models. We have found generally good agreement between the results of the nonlinear TF model and the RPA model in doped graphene, apart from Friedel oscillations in the latter model. However, relatively strong nonlinear effects are found in the TF model to persist even at high doping densities and large distances of the external charge.Comment: 12 pages including 6 figure

    Statistics of the Mesoscopic Field

    Full text link
    We find in measurements of microwave transmission through quasi-1D dielectric samples for both diffusive and localized waves that the field normalized by the square root of the spatially averaged flux in a given sample configuration is a Gaussian random process with position, polarization, frequency, and time. As a result, the probability distribution of the field in the random ensemble is a mixture of Gaussian functions weighted by the distribution of total transmission, while its correlation function is a product of correlators of the Gaussian field and the square root of the total transmission.Comment: RevTex: 5 pages, 2 figures; to be presented at Aspects of Quantum Chaotic Scattering (Dresden, March 7-12, 2005

    Transition Detection at Cryogenic Temperatures Using a Carbon-Based Resistive Heating Layer Coupled with Temperature Sensitive Paint

    Get PDF
    This paper will highlight the development and application of a carbon-based resistive heating layer for use in transition detection at cryogenic temperatures at the National Transonic Facility (NTF) for full-flight Reynolds number testing. This study builds upon previous work that was successfully demonstrated at the 0.3-m Transonic Cryogenic Tunnel on a smaller-scale airfoil shape of regular geometry. However, the test performed at the NTF involved a semispan wing with complex geometry and significantly larger than previous tests. This required the development of new coatings to provide suitable resistances to provide adequate heating rates for transition detection. Successful implementation of this technology has the ability to greatly enhance transition detection experiments at cryogenic temperatures as well as reducing perturbation in the tunnel caused by more traditional transition detection methods

    Dynamic Correlation in Wave Propagation in Random Media

    Full text link
    We report time-resolved measurements of the statistics of pulsed transmission through quasi-one-dimensional dielectric media with static disorder. The normalized intensity correlation function with displacement and polarization rotation for an incident pulse of linewidth σ\sigma at delay time t is a function only of the field correlation function, which is identical to that found for steady-state excitation, and of κσ(t)\kappa_{\sigma}(t), the residual degree of intensity correlation at points at which the field correlation function vanishes. The dynamic probability distribution of normalized intensity depends only upon κσ(t)\kappa_{\sigma}(t). Steady-state statistics are recovered in the limit σ\sigma->0, in which κσ=0\kappa_{\sigma=0} is the steady-state degree of correlation.Comment: 4 RevTex pages, 4 figure

    Eliciting Human Preferences with Language Models

    Full text link
    Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts. But selecting examples or writing prompts for can be challenging--especially in tasks that involve unusual edge cases, demand precise articulation of nebulous preferences, or require an accurate mental model of LM behavior. We propose to use *LMs themselves* to guide the task specification process. In this paper, we introduce **Generative Active Task Elicitation (GATE)**: a learning framework in which models elicit and infer intended behavior through free-form, language-based interaction with users. We study GATE in three domains: email validation, content recommendation, and moral reasoning. In preregistered experiments, we show that LMs prompted to perform GATE (e.g., by generating open-ended questions or synthesizing informative edge cases) elicit responses that are often more informative than user-written prompts or labels. Users report that interactive task elicitation requires less effort than prompting or example labeling and surfaces novel considerations not initially anticipated by users. Our findings suggest that LM-driven elicitation can be a powerful tool for aligning models to complex human preferences and values.Comment: 26 pages, 15 figure

    A Non-Perturbative Treatment of the Pion in the Linear Sigma-Model

    Get PDF
    Using a non-perturbative method based on the selfconsistent Quasi-particle Random-Phase Approximation (QRPA) we describe the properties of the pion in the linear σ\sigma-model. It is found that the pion is massless in the chiral limit, both at zero- and finite temperature, in accordance with Goldstone's theorem.Comment: To appear in Nucl.Phys. A, 16 pages, 2 Postscript figure

    Morphology and biomechanics of the nests of the Common Blackbird Turdus merula

    Get PDF
    Capsule Common blackbirds select different materials, with varying biomechanical properties, to construct different parts of their nest. Aims This study tested the hypothesis that outer components of a nest have a more structural role and so are stronger than materials used to line the cup. Methods Blackbird nests were measured prior to being dismantled to isolate structural components which were tested for mechanical strength and rigidity. Results Outer nest wall materials were significantly thicker, stronger and more rigid than materials in the inner structural wall or the cup lining. In the vertical plane materials used in the structural wall did not differ. By contrast, lining materials from the bottom of the nest cup were significantly thicker, stronger and more rigid than materials from the top of the cup. Conclusion Blackbirds use different materials in nest construction roles suited to their properties and so may be able to recognise the structural properties of these materials. Materials on the outside of the nest may have a key structural role during construction
    corecore