44 research outputs found

    Probing the Thermal Deoxygenation of Graphene Oxide using High Resolution In Situ X-Ray based Spectroscopies

    Full text link
    Despite the recent developments in Graphene Oxide due to its importance as a host precursor of Graphene, the detailed electronic structure and its evolution during the thermal reduction remain largely unknown, hindering its potential applications. We show that a combination of high resolution in situ X-ray photoemission and X-ray absorption spectroscopies offer a powerful approach to monitor the deoxygenation process and comprehensively evaluate the electronic structure of Graphene Oxide thin films at different stages of the thermal reduction process. It is established that the edge plane carboxyl groups are highly unstable, whereas carbonyl groups are more difficult to remove. The results consistently support the formation of phenol groups through reaction of basal plane epoxide groups with adjacent hydroxyl groups at moderate degrees of thermal activation (~400 {\deg}C). The phenol groups are predominant over carbonyl groups and survive even at a temperature of 1000 {\deg}C. For the first time a drastic increase in the density of states (DOS) near the Fermi level at 600 {\deg}C is observed, suggesting a progressive restoration of aromatic structure in the thermally reduced graphene oxideComment: Pagona Papakonstantinou as Corresponding author, E-mail: [email protected]

    Selecting Support Layer for Electrodeposited Efficient Cobalt Oxide/Hydroxide Nanoflakes to Split Water

    No full text
    Energy and environment crises motivated scientists to develop sustainable, renewable, and clean energy resources mainly based on solar hydrogen. For this purpose, one main challenge is the low cost flexible substrates for designing earth abundant efficient cocatalysts to reduce required water oxidation overpotential. Here, a systematic morphological and electrochemical study has been reported for cobalt oxide/hydroxide nanoflakes simply electrodeposited on four different commercially available substrates, titanium, copper sheet, steel mesh, and nickel foam. Remarkable dependence between the used substrate, morphology, and electrocatalytic properties of nanoflakes introduced flexible porous steel layer as the best substrate for samples with 499 mV overpotential, 5.3 Ω charge transfer resistance, and 0.03 S<sup>–1</sup> turnover frequency. Besides, carbonaceous paste including carbon nanotubes and graphene sheets as the middle layer increased turnover frequency by 33%, effective surface interface nearly three times while it reduced 7.5% of resistance. Hence, optimizing the conductive nanostructured paste can lead to more efficient cobalt electrocatalysts exposing more active atomic surface sites
    corecore