143 research outputs found

    Cathodoluminescence Image Processing of High TC Superconductors

    Get PDF
    Cathodoluminescence (CL) in the Scanning Electron Microscope (SEM) was performed for both ceramic pellets and thin films of YBaCuO high TC superconductors. Image processing provided additional quantitative information. For single phase films, we demonstrated the possibility to create thickness maps in real time from the CL pictures. The gradual thickness variation within the sample was revealed by the histogram of the thickness image. The continuity of the film was observed at a few threshold thicknesses values, defined by the fraction of the occupied area. At the conduction threshold value, the location and width of the conducting paths could be estimated. The analysis was of a lateral resolution better than 1 μm and of a submicron thickness resolution. Insulating impurity grains embedded in the YBaCuO ceramic pellet, which could not be recognized by secondary electrons, were revealed by the CL mode in the SEM. Their long luminescence lifetime was recorded at different time scales and provided an estimation of the lifetime and density of generated carriers. This analysis can be applied to any other high TC superconductors

    Preparation and analysis of a two-components breath figure at the nanoscale

    Get PDF
    International audienceSolid/liquid two-components Ga-Pb structures in isolated nanometer sized particles have been produced and studied by electron microscopy. Production is based on the breath figure technique and we investigate the way the two components are distributed. We clearly identify two growth regimes associated with the two different ways a Pb atom incorporates into a Ga nanodrop. Using TEM and SEM, the shape and microstructure of the nanoparticles are studied and the results obtained are in good agreement with the proposed model. The experimental technique used appears to be appropriate to produce Pb nanocrystals in liquid Ga nano-containers

    Cerebrospinal fluid levels of glial marker YKL-40 strongly associated with axonal injury in HIV infection

    Get PDF
    Background: HIV-1 infects the central nervous system (CNS) shortly after transmission. This leads to a chronic intrathecal immune activation. YKL-40, a biomarker that mainly reflects activation of astroglial cells, has not been thoroughly investigated in relation to HIV. The objective of our study was to characterize cerebrospinal fluid (CSF) YKL-40 in chronic HIV infection, with and without antiretroviral treatment (ART). Methods: YKL-40, neopterin, and the axonal marker neurofilament light protein (NFL) were analyzed with ELISA in archived CSF samples from 120 HIV-infected individuals (85 untreated neuroasymptomatic patients, 7 with HIVassociated dementia, and 28 on effective ART) and 39 HIV-negative controls. Results: CSF YKL-40 was significantly higher in patients with HIV-associated dementia compared to all other groups. It was also higher in untreated neuroasymptomatic individuals with CD4 cell count < 350 compared to controls. Significant correlations were found between CSF YKL-40 and age (r = 0.38, p < 0.001), CD4 (r = − 0.36, p < 0. 001), plasma HIV RNA (r = 0.35, p < 0.001), CSF HIV RNA (r = 0.35, p < 0.001), CSF neopterin (r = 0.40, p < 0.001), albumin ratio (r = 0.44, p < 0.001), and CSF NFL (r = 0.71, p < 0.001). Age, CD4 cell count, albumin ratio, and CSF HIV RNA were found as independent predictors of CSF YKL-40 concentrations in multivariable analysis. In addition, CSF YKL-40 was revealed as a strong independent predictor of CSF NFL together with age, CSF neopterin, and CD4 cell count. Conclusions: CSF YKL-40 is a promising biomarker candidate for understanding the pathogenesis of HIV in the CNS. The strong correlation between CSF YKL-40 and NFL suggests a pathogenic association between astroglial activation and axonal injury, and implies its utility in assessing the prognostic value of YKL-40

    Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    Get PDF
    BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+). The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg(2+), 0.12 and CH(3)Hg(+), 0.08. The addition of Hg(2+) (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+) addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+) no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+) showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+) (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Dynamic Study of Nanodroplet Nucleation and Growth on Self-Supported Nanothick Liquid Films

    No full text

    A systematic approach to reduce macroscopic defects in c-axis oriented YBCO films

    No full text
    c-axis oriented YBCO films with Tc=90 K and low macroscopic defect density were grown reproducibly on STO, LAO and YSZ/Al2O3 with a rf-sputtering system using a View the MathML sourceressure controlled View the MathML sourceelf-View the MathML sourceemplate (PST) process under optimized conditions. We show how the hole formation in YBCO films is prevented and the target lifetime enhanced with a proper adjustment of the rf-power and the deliberate adding of H2O molecules to the sputtering gas. Variation of the oxygen pressure demonstrates that at low pressure YBCO films with Tc=85 K and a smoother surface are grown, while at high pressure films with Tc=90 K and a rough surface due to CuO particles are obtained. The benefits of both pressure regimes are merged in the PST process where the growth starts at low oxygen pressure. After the growth of a few unit cells the pressure is increased and stabilized until the end of growth resulting in YBCO films with Tc=90 K and a significant smoother surface. We conclude that nucleation sites of CuO are located only on the substrate surface and that it is a necessity to grow YBCO in the stability region of CuO to obtain films with Tc=90 K
    • …
    corecore