123 research outputs found

    Generation of Marker- and Backbone-Free Transgenic Potatoes by Site-Specific Recombination and a Bi-Functional Marker Gene in a Non-Regular One-Border Agrobacterium Transformation Vector

    Get PDF
    A binary vector, designated PROGMO, was constructed to assess the potential of the Zygosaccharomyces rouxii R/Rs recombination system for generating marker- and backbone-free transgenic potato (Solanum tuberosum) plants with high transgene expression and low copy number insertion. The PROGMO vector utilises a constitutively expressed plant-adapted R recombinase and a codA-nptII bi-functional, positive/negative selectable marker gene. It carries only the right border (RB) of T-DNA and consequently the whole plasmid will be inserted as one long T-DNA into the plant genome. The recognition sites (Rs) are located at such positions that recombinase enzyme activity will recombine and delete both the bi-functional marker genes as well as the backbone of the binary vector, leaving only the gene of interest flanked by a copy of Rs¿and RB. Efficiency of PROGMO transformation was tested by introduction of the GUS reporter gene into potato. It was shown that after 21 days of positive selection and using 300 mgl¿1 5-fluorocytosine for negative selection, 29% of regenerated shoots carried only the GUS gene flanked by a copy of Rs and RB. The PROGMO vector approach is simple and might be widely applicable for the production of marker- and backbone-free transgenic plants of many crop species

    Primary malignant melanoma of the stomach: report of a case

    Get PDF
    We report a case of primary malignant melanoma (MM) of the stomach. The patient, a 73-year-old man, was referred to our hospital for investigation of an elevated lesion in the stomach, detected by gastroscopy. On admission, physical examinations and laboratory data were unremarkable. Gastroscopy revealed a pigmented, elevated tumor, approximately 2 cm in diameter, in the posterior wall of the stomach. A biopsy was taken, which resulted in a diagnosis of MM, based on the presence of melanin in tumor cells. F-18 fluorodeoxyglucose positron emission tomography showed no accumulation of tracer except for the tumor in the stomach, indicating that it was a primary MM of the stomach. The patient underwent distal gastrectomy, but died of recurrence 1 year later. Very few cases of primary MM of the stomach have been reported. Thus, we report this case, followed by a review of the literature

    Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution

    Get PDF
    In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell

    The Cell Cycle Regulated Transcriptome of Trypanosoma brucei

    Get PDF
    Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a “double-cut” elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids

    Bradyrhizobium elkanii nod regulon: insights through genomic analysis

    Get PDF
    Abstract A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes

    Generation of marker-free transgenic plants

    No full text
    corecore