39 research outputs found

    Periodic variable A-F spectral type stars in the northern TESS continuous viewing zone. I. Identification and classification

    Get PDF
    Context. In the time of large space surveys that provide tremendous amounts of precise data, it is highly desirable to have a commonly accepted methodology and system for the classification of variable stars. This is especially important for A-F stars, which can show intrinsic brightness variations due to both rotation and pulsations. Aims: The goal of our study is to provide a reliable classification of the variability of A-F stars brighter than 11 mag located in the northern TESS continuous viewing zone. We also aim to provide a thorough discussion about issues in the classification related to data characteristics and the issues arising from the similar light-curve shape generated by different physical mechanisms. Methods: We used TESS long- and short-cadence photometric data and corresponding Fourier transform to classify the variability type of the stars. We also used spectroscopic observations to determine the projected rotational velocity of a few stars. Results: We present a clear and concise classification system that is demonstrated on many examples. We find clear signs of variability in 3025 of 5923 studied stars (51%). For 1813 of these 3025 stars, we provide a classification; the rest cannot be unambiguously classified. Of the classified stars, 64.5% are pulsating stars of g-mode γ Doradus (GDOR) and p-mode δ Scuti types and their hybrids. We realised that the long- and short-cadence pre-search data conditioning simple aperture photometry data can differ significantly not only in amplitude but also in the content of instrumental and data-reduction artefacts, making the long-cadence data less reliable. We identified a new group of stars that show stable light curves and characteristic frequency spectrum patterns (8.5% of the classified stars). According to the position in the Hertzsprung-Russell diagram, these stars are likely GDOR stars but are on average about 200 K cooler than GDORs and have smaller amplitudes and longer periods. With the help of spectroscopic measurements of v sin i, we show that the variability of stars with unresolved groups of peaks located close to the positions of the harmonics in their frequency spectra (16% of the classified stars) can be caused by rotation rather than by pulsations. We show that without spectroscopic observations it can be impossible to unambiguously distinguish between ellipsoidal variability and rotational variability. We also applied our methodology to three previous studies and find significant discrepancies in the classification. Conclusions: We demonstrate how difficult the classification of variable A-F stars can be when using only photometric data, how the residual artefacts can produce false positives, and that some types cannot actually be distinguished without spectroscopic observations. Our analysis provides collections that can be used as training samples for automatic classification. Full Table 5 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/666/A14

    Hibdridni Nd-Fe-B/barijum-ferit magnetni materijali sa epoksi matricom

    Get PDF
    Lately, there has been great attention paid to the research of bonded hybrid composites with improved dynamic mechanical capacities capable of replacing bonded Nd-Fe-B magnetic materials, by using cheaper (ferrite) materials instead of the Nd-Fe-B powder while retaining the satisfying values of the maximum magnetic energy. The objective of this study is to assess how different contents of Nd-Fe-B and/or barium ferrite particles can affect morphological, dynamic mechanical and magnetic properties of bonded composite materials. The interactions between employed magnetic powders and the interactions between magnetic powders and polymer binder are considered. For the examination of the magnetic behaviour, a vibrating sample magnetometer (VSM) is used. Different shapes and sizes of the obtained hysteresis loops are used for comparison and prediction of the polymer bonded materials properties. The homogeneous distribution of the magnetic particles in the polymer matrix is validated using scanning electron microscopy (SEM). The elastic and damping behavior examined by dynamic mechanical analysis (DMA) show improved properties for hybrid composite materials.Istraživački trend u oblasti polimerom vezanih (bonded) Nd-Fe-B magnetnih materijala se reflektuje kroz razvoj bonded hibridnih kompozita sa poboljšanim dinamičko-mehaničkim svojstvima i primetno nižoj ceni zbog zamene skupe Nd- Fe-B legure jeftinijim magnetnim materijalima (ferit) uz postizanje zadovoljavajućih vrednosti maksimalne magnetne energije. Cilj ovog rada je da ukaže i predvidi uticaj različitog sadržaja Nd-Fe-B i/ili barijum feritnih čestica na morfološka, dinamičko mehanička i magnetna svojstava bonded magneta. Posmatrane su i analizirane interakcije između magnetnih prahova, kao i interakcije između magnetnih prahova i polimernog veziva i njihov uticaj na finalna svojstva bonded magneta. Za ispitivanje magnetnog ponašanja korišćen je vibraconi magnetometar (VSM). Različite veličine i oblici dobijenih histerezisnih krivih su poređeni i korišćeni za predviđanje svojstava ispitivanih kompozitnih materijala. Homogena raspodela magnetnih čestica u polimernoj matrici je potvrđena korišćenjem skenirajućeg elektronskog mikroskopa (SEM). Elastična svojstva i svojstvo prigušenja oscilacija ispitivano je korišćenjem dinamičko mehaničke analize (DMA) koja ukazuje na poboljšana svojstva kod hibridnih kompozita

    COVID-19 infection in adult patients with hematological malignancies: a European Hematology Association Survey (EPICOVIDEHA)

    Get PDF
    Background: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.EPICOVIDEHA has received funds from Optics COMMITTM (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223)

    A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems

    Full text link

    Hybrid Nd-Fe-B/barium ferrite magnetic materials with epoxy matrix

    No full text
    Lately a great attention has been paid to the research of bonded hybrid composites with improved dynamic mechanical capacities capable of replacing bonded Nd-Fe-B magnetic materials, by using the cheaper (ferrite) materials instead of the Nd-Fe-B powder while retaining the satisfying values of the maximal magnetic energy. The objective of this study is to assess how different contents of Nd-Fe-B and/or barium ferrite particles can affect morphological, dynamic mechanical and magnetic properties of bonded composite materials. The interactions between employed magnetic powders and the interactions between magnetic powders and polymer binder are considered. For the examination of the magnetic behaviour, a vibrating sample magnetometer (VSM) is used. Different shapes and sizes of the obtained hysteresis loops are used for comparison and prediction of the polymer bonded materials properties. The homogeneous distribution of the magnetic particles in the polymer matrix is validated using the scanning electron microscope (SEM). The elastic and damping behaviour examined by the dynamic mechanical analysis (DMA) show improved properties for hybrid composite materials
    corecore