76,508 research outputs found

    Analysis of the strong coupling constant GDsDsϕG_{D_{s}^{*}D_{s}\phi} and the decay width of DsDsγD_{s}^{*}\rightarrow D_{s}\gamma with QCD sum rules

    Full text link
    In this article, we calculate the form factors and the coupling constant of the vertex DsDsϕD_{s}^{*}D_{s}\phi using the three-point QCD sum rules. We consider the contributions of the vacuum condensates up to dimension 77 in the operator product expansion(OPE). And all possible off-shell cases are considered, ϕ\phi, DsD_{s} and DsD_{s}^{*}, resulting in three different form factors. Then we fit the form factors into analytical functions and extrapolate them into time-like regions, which giving the coupling constant for the process. Our analysis indicates that the coupling constant for this vertex is GDsDsϕ=4.12±0.70GeV1G_{Ds*Ds\phi}=4.12\pm0.70 GeV^{-1}. The results of this work are very useful in the other phenomenological analysis. As an application, we calculate the coupling constant for the decay channel DsDsγD_{s}^{*}\rightarrow D_{s}\gamma and analyze the width of this decay with the assumption of the vector meson dominance of the intermediate ϕ(1020)\phi(1020). Our final result about the decay width of this decay channel is Γ=0.59±0.15keV\Gamma=0.59\pm0.15keV.Comment: arXiv admin note: text overlap with arXiv:1501.03088 by other author

    Spin-correlation functions in ultracold paired atomic-fermion systems: sum rules, self-consistent approximations, and mean fields

    Full text link
    The spin response functions measured in multi-component fermion gases by means of rf transitions between hyperfine states are strongly constrained by the symmetry of the interatomic interactions. Such constraints are reflected in the spin f-sum rule that the response functions must obey. In particular, only if the effective interactions are not fully invariant in SU(2) spin space, are the response functions sensitive to mean field and pairing effects. We demonstrate, via a self-consistent calculation of the spin-spin correlation function within the framework of Hartree-Fock-BCS theory, how one can derive a correlation function explicitly obeying the f-sum rule. By contrast, simple one-loop approximations to the spin response functions do not satisfy the sum rule. As we show, the emergence of a second peak at higher frequency in the rf spectrum, as observed in a recent experiment in trapped 6Li^6\text{Li}, can be understood as the contribution from the paired fermions, with a shift of the peak from the normal particle response proportional to the square of the BCS pairing gap.Comment: 7 pages, 1 figure, content adde

    Developments in electromagnetic tomography instrumentation.

    Get PDF
    A new EMT sensor and instrumentation is described which combines the best features of previous systems and has a modular structure to allow for future system expansion and development

    Multifractal analysis of complex networks

    Full text link
    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions DqD_{q} of some theoretical networks, namely scale-free networks, small world networks and random networks, and one kind of real networks, namely protein-protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein-protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of DqD_{q} due to changes in the parameters of the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table

    Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Full text link
    In this paper, we propose a new scenario in which a rapidly-rotating strongly-magnetized pulsar without any surrounding supernova ejecta produces fast radio bursts (FRBs) repeatedly via some mechanisms, and meanwhile, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently-discovered persistent radio source associated with the repeating FRB 121102 in reasonable ranges of the model parameters. In addition, our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all the repeating bursts observed in four years.Comment: 6 pages, 1 figure, ApJ Letters in pres

    Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments

    Full text link
    The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to describe the transport properties of the cuprate superconductors in the ``pseudogap'' regime, in particular, the metal-insulator crossover of the in-plane resistivity, is generalized to the ``strange metal'' phase at higher temperature/doping. The short-range antiferromagnetic order and the gauge field fluctuations, which were the key ingredients in the theory for the pseudogap phase, also play an important role in the present case. The main difference between these two phases is caused by the existence of an underlying statistical π\pi-flux lattice for charge carriers in the former case, whereas the background flux is absent in the latter case. The Fermi surface then changes from small ``arcs'' in the pseudogap to a rather large closed line in the strange metal phase. As a consequence the celebrated linear in T dependence of the in-plane and out-of-plane resistivity is shown explicitly to recover. The doping concentration and temperature dependence of theoretically calculated in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version submitted on 24 Oc

    GRB Precursors in the Fallback Collapsar Scenario

    Get PDF
    Precursor emission has been observed in a non-negligible fraction of gamma-ray bursts.The time gap between the precursor and the main burst extends in some case up to hundreds of seconds, such as in GRB041219A, GRB050820A and GRB060124. Both the origin of the precursor and the large value of the time gap are controversial. Here we investigate the maximum possible time gaps arising from the jet propagation inside the progenitor star, in models which assume that the precursor is produced by the jet bow shock or the cocoon breaking out of the progenitor. Due to the pressure drop ahead of the jet head after it reaches the stellar surface, a rarefaction wave propagates back into the jet at the sound speed, which re-accelerates the jet to a relativistic velocity and therefore limits the gap period to within about ten seconds. This scenario therefore cannot explain gaps which are hundreds of seconds long. Instead, we ascribe such long time gaps to the behavior of the central engine, and suggest a fallback collapsar scenario for these bursts. In this scenario, the precursor is produced by a weak jet formed during the initial core collapse, possibly related to MHD processes associated with a short-lived proto-neutron star, while the main burst is produced by a stronger jet fed by fallback accretion onto the black hole resulting from the collapse of the neutron star. We have examined the propagation times of the weak precursor jet through the stellar progenitor. We find that the initial weak jet can break out of the progenitor in a time less than ten seconds (a typical precursor duration) provided that it has a moderately high relativistic Lorentz factor \Gamma>=10 (abridged).Comment: 8 pages, accepted by ApJ, this version contains significantly expanded discussion and an additional figure, conclusions unchange
    corecore