The spin response functions measured in multi-component fermion gases by
means of rf transitions between hyperfine states are strongly constrained by
the symmetry of the interatomic interactions. Such constraints are reflected in
the spin f-sum rule that the response functions must obey. In particular, only
if the effective interactions are not fully invariant in SU(2) spin space, are
the response functions sensitive to mean field and pairing effects. We
demonstrate, via a self-consistent calculation of the spin-spin correlation
function within the framework of Hartree-Fock-BCS theory, how one can derive a
correlation function explicitly obeying the f-sum rule. By contrast, simple
one-loop approximations to the spin response functions do not satisfy the sum
rule. As we show, the emergence of a second peak at higher frequency in the rf
spectrum, as observed in a recent experiment in trapped 6Li, can be
understood as the contribution from the paired fermions, with a shift of the
peak from the normal particle response proportional to the square of the BCS
pairing gap.Comment: 7 pages, 1 figure, content adde