98 research outputs found

    PrefixMol: Target- and Chemistry-aware Molecule Design via Prefix Embedding

    Full text link
    Is there a unified model for generating molecules considering different conditions, such as binding pockets and chemical properties? Although target-aware generative models have made significant advances in drug design, they do not consider chemistry conditions and cannot guarantee the desired chemical properties. Unfortunately, merging the target-aware and chemical-aware models into a unified model to meet customized requirements may lead to the problem of negative transfer. Inspired by the success of multi-task learning in the NLP area, we use prefix embeddings to provide a novel generative model that considers both the targeted pocket's circumstances and a variety of chemical properties. All conditional information is represented as learnable features, which the generative model subsequently employs as a contextual prompt. Experiments show that our model exhibits good controllability in both single and multi-conditional molecular generation. The controllability enables us to outperform previous structure-based drug design methods. More interestingly, we open up the attention mechanism and reveal coupling relationships between conditions, providing guidance for multi-conditional molecule generation

    Spatial inequity in access to healthcare facilities at a county level in a developing country: a case study of Deqing County, Zhejiang, China

    Get PDF
    Background The inequities in healthcare services between regions, urban and rural, age groups and diverse income groups have been growing rapidly in China. Equal access to basic medical and healthcare services has been recognized as “a basic right of the people” by Chinese government. Spatial accessibility to healthcare facilities has received huge attention in Chinese case studies but been less studied particularly at a county level due to limited availability of high-resolution spatial data. This study is focused on measuring spatial accessibility to healthcare facilities in Deqing County. The spatial inequity between the urban (town) and rural is assessed and three scenarios are designed and built to examine which scenario is instrumental for better reducing the spatial inequity. Methods This study utilizes highway network data, Digital Elevation Model (DEM), location of hospitals and clinics, 2010 census data at the finest level – village committee, residential building footprint and building height. Areal weighting method is used to disaggregate population data from village committee level to residential building cell level. Least cost path analysis is applied to calculate the travel time from each building cell to its closest healthcare facility. Then an integral accessibility will be calculated through weighting the travel time to the closest facility between three levels. The spatial inequity in healthcare accessibility between the town and rural areas is examined based on the coverages of areas and populations. The same method is used to compare three scenarios aimed at reducing such spatial inequity – relocation of hospitals, updates of weighting values, and the combination of both. Results 50.03 % of residents can reach a county hospital within 15 min by driving, 95.77 % and 100 % within 30 and 60 min respectively. 55.14 % of residents can reach a town hospital within 5 min, 98.04 % and 100 % within 15 and 30 min respectively. 57.86 % of residential building areas can reach a village clinic within 5 min, 92.65 % and 99.22 % within 10 and 15 min. After weighting the travel time between the three-level facilities, 30.87 % of residents can reach a facility within 5 min, 80.46 %% and 99.88 % within 15 and 30 min respectively. Conclusions The healthcare accessibility pattern of Deqing County has exhibited spatial inequity between the town and rural areas, with the best accessibility in the capital of the county and poorest in the West of the county. There is a high negative correlation between population ageing and healthcare accessibility. Allocation of more advanced medical and healthcare equipment and highly skillful doctors and nurses to village clinics will be an efficient means of reducing the spatial inequity and further consolidating the national medical security system. GIS (Geographical Information Systems) methods have proven successful method of providing quantitative evidence for policy analysis although the data sets and methods could be further improved

    Expatriation and Incapacity created by a Multitude of Hidden Inequalities

    Get PDF
    The ability of UK based Academics to function within collaborative partnerships is becoming an important part of the UK Universities internationalisation agenda. This chapter offers an auto-ethnographical academic expatriate experience detailing some of the challenges faced when moving to work in a ‘UK environment positioned abroad’, specifically in China. It will provide HR personnel with alternative understandings of possible support strategies that could assist individuals in dealing with a variety of hidden inequalities that surface. These hidden inequalities can contribute to a possible shortening of the assignment due to cultural contexts in which they are operating (Foster 1997; Wang and Varma 2017)

    Effects of Preparation Methods on the Thermoelectric Performance of SWCNT/Bi2Te3 Bulk Composites

    No full text
    Single-walled carbon nanotube (SWCNT)/Bi2Te3 composite powders were fabricated via a one-step in situ reductive method, and their corresponding bulk composites were prepared by a cold-pressing combing pressureless sintering process or a hot-pressing process. The influences of the preparation methods on the thermoelectric properties of the SWCNT/Bi2Te3 bulk composites were investigated. All the bulk composites showed negative Seebeck coefficients, indicating n-type conduction. A maximum power factor of 891.6 μWm−1K−2 at 340 K was achieved for the SWCNT/Bi2Te3 bulk composites with 0.5 wt % SWCNTs prepared by a hot-pressing process, which was ~5 times higher than that of the bulk composites (167.7 μWm−1K−2 at 300 K) prepared by a cold-pressing combing pressureless sintering process, and ~23 times higher than that of the bulk composites (38.6 μWm−1K−2 at 300 K) prepared by a cold-pressing process, mainly due to the enhanced density of the hot-pressed bulk composites
    • 

    corecore