1,139 research outputs found

    Imprint of the stochastic nature of photon emission by electrons on the proton energy spectra in the laser-plasma interaction

    Full text link
    The impact of stochasticity effects (SEs) in photon emissions on the proton energy spectra during laser-plasma interaction is theoretically investigated in the quantum radiation-dominated regime, which may facilitate SEs experimental observation. We calculate the photon emissions quantum mechanically and the plasma dynamics semiclassically via two-dimensional particle-in-cell simulations. An ultrarelativistic plasma generated and driven by an ultraintense laser pulse head-on collides with another strong laser pulse, which decelerates the electrons due to radiation-reaction effect and results in a significant compression of the proton energy spectra because of the charge separation force. In the considered regime the SEs are demonstrated in the shift of the mean energy of the protons up to hundreds of MeV. This effect is robust with respect to the laser and target parameters and measurable in soon available strong laser facilities

    Low temperature x-ray diffraction study on superconductivity

    Get PDF
    金沢大学理工研究域Using a low temperature x-ray diffractometer, we studied superconductivity materials, optimally doped and underdoped YBCOs and PrOs4Sb 12 between 0.1 K and 300 K. At several temperatures, whole profiles of the x-ray reflection peak were measured and refined by Rietveld analysis. By Rietveld analysis, we found that Pr atoms in PrOs4Sb12 are still oscillating at an amplitude of about 0.1 A at 0.18 K. For some reflection planes, x-ray diffraction measurement with a small step size and a long stepping time was performed to accumulate more counts at certain temperatures. The lattice constant d of optimally doped YBCO (OPT YBCO) shows anomalous behaviours at around the superconductivity transition temperature Tc and around spin gap temperature T*. In OPT YBCO, the intensity of the reflection spectrum shows a clear anomaly at around Tc. © 2009 IOP Publishing Ltd

    Determining 11^{--} Heavy Hybrid Masses via QCD Sum Rules

    Full text link
    The masses of 11^{--} charmonium and bottomonium hybrids are evaluated in terms of QCD sum rules. We find that the ground state hybrid in charm sector lies in mHc=4.124.79m_{H_c}=4.12\sim 4.79 GeV, while in bottom sector the hybrid may situated in mHb=10.2411.15m_{H_b} = 10.24\sim 11.15 GeV. Since the numerical result on charmonium hybrid mass is not compatible with the charmonium spectra, including structures newly observed in experiment, we tempt to conclude that such a hybrid does not purely exist, but rather as an admixture with other states, like glueball and regular quarkonium, in experimental observation. However, our result on bottomonium hybrid coincide with the "exotic structure" recently observed at BELLE.Comment: 15 pages, 5 figures, version to appear in J.Phys.

    The effects of degree correlations on network topologies and robustness

    Full text link
    Complex networks have been applied to model numerous interactive nonlinear systems in the real world. Knowledge about network topology is crucial for understanding the function, performance and evolution of complex systems. In the last few years, many network metrics and models have been proposed to illuminate the network topology, dynamics and evolution. Since these network metrics and models derive from a wide range of studies, a systematic study is required to investigate the correlations between them. The present paper explores the effect of degree correlation on the other network metrics through studying an ensemble of graphs where the degree sequence (set of degrees) is fixed. We show that to some extent, the characteristic path length, clustering coefficient, modular extent and robustness of networks are directly influenced by the degree correlation.Comment: 13 pages, 6 figure

    Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties

    Get PDF
    ased on the proportional-integral-derivative (PID) control structure widely used in engineering applications, a robust indirect-type iterative learning control (ILC) method is proposed for industrial batch processes subject to time-varying uncertainties. An important merit is that the proposed ILC design is independent of the PID tuning that aims primarily to hold robust stability of the closed-loop system, owing to the fact that the ILC updating law is implemented through adjusting the setpoint of the closed-loop PID control structure plus a feedforward control to the plant input from batch to batch. According to the robust H infinity control objective, a robust discrete-time PID tuning algorithm is given in terms of the plant state-space model description to accommodate for time-varying process uncertainties. For the batchwise direction, a robust ILC updating law is developed based on the two-dimensional (2D) control system theory. Only measured output errors of current and previous cycles are used to implement the proposed ILC scheme for the convenience of practical application. An illustrative example from the literature is adopted to demonstrate the effectiveness and merits of the proposed ILC method

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Measurements of J/psi decays into phi pi^0, phi eta, and phi eta^prime

    Full text link
    Based on 5.8x10^7 J/psi events detected in BESII, the branching fractions of J/psi--> phi eta and phi eta^prime are measured for different eta and eta^prime decay modes. The results are significantly higher than previous measurements. An upper limit on B(J/psi--> phi pi^0) is also obtained.Comment: 9 pages, 10 figure
    corecore