1,846 research outputs found

    Possible interpretation of the ZbZ_b(10610) and ZbZ_b(10650) in a chiral quark model

    Full text link
    Motivated by the two charged bottomonium-like resonances ZbZ_b(10610) and ZbZ_b(10650) newly observed by the Belle collaboration, the possible molecular states composed of a pair of heavy mesons, BBˉ,BBˉ,BBˉ,BsBˉB\bar{B}, B\bar{B}^*, B^*\bar{B}^*, B_s\bar{B}, etc (in S-wave), are investigated in the framework of chiral quark models by the Gaussian expansion method. The bound states BBˉB\bar{B}^* and BBˉB^*\bar{B}^* with quantum numbers I(JPC)=1(1+)I(J^{PC})=1(1^{+-}), which are good candidates for the Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) respectively, are obtained. Other three bound states BBˉB\bar{B}^* with I(JPC)=0(1++)I(J^{PC})=0(1^{++}), BBˉB^*\bar{B}^* with I(JPC)=1(0++),0(2++)I(J^{PC})=1(0^{++}), 0(2^{++}) are predicted. These states may be observed in open-bottom or hidden-bottom decay channel of highly excited Υ\Upsilon. When extending directly the quark model to the hidden color channel of the multi-quark system, more deeply bound states are found. Future experimental search of those states will cast doubt on the validity of applying the chiral constituent quark model to the hidden color channel directly.Comment: 13 pages, 1 figure, title and some arguments in the abstract and section 5 are revised, results unchange

    c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis.</p> <p>Results</p> <p>The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA) inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH<sub>2</sub>-terminal kinase (JNK) and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured.</p> <p>Conclusions</p> <p>DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.</p

    Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip

    Get PDF
    Using the recursive Green's function technique, we study the coherent electron conductance of a quantum point contact in the presence of a scanning probe microscope tip. Images of the coherent fringe inside a quantum point contact for different widths are obtained. It is found that the conductance of a specific channel is reduced while other channels are not affected as long as the tip is located at the positions correspending to that channel. Moreover, the coherent fringe is smoothed out by increasing the temperature or the voltage across the device. Our results are consistent with the experiments reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Measurement of proton electromagnetic form factors in e+eppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+eppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+eppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (GE/GM|G_{E}/G_{M}|) and the value of the effective (Geff|G_{\rm{eff}}|), electric (GE|G_E|) and magnetic (GM|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. GE/GM|G_{E}/G_{M}| and GM|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and GE|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Observation of Ds+pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×103(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+ee^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×104(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη\phi\eta' mass spectrum in the 2.02.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η\eta' meson (γπ+π\gamma\pi^+\pi^- and ηπ+π\eta\pi^+\pi^-), a simultaneous fit to the ϕη\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.8±1.2±1.7)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.6±1.4±2.0)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Improved measurement of the absolute branching fraction of D+Kˉ0μ+νμD^{+}\rightarrow \bar K^0 \mu^{+}\nu_{\mu}

    Get PDF
    By analyzing 2.93 fb1^{-1} of data collected at s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+Kˉ0μ+νμ)=(8.72±0.07stat.±0.18sys.)%{\mathcal B}(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=(8.72 \pm 0.07_{\rm stat.} \pm 0.18_{\rm sys.})\%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0Kμ+νμ){\mathcal B}(D^0\to K^-\mu^+\nu_\mu), B(D+Kˉ0e+νe){\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e}), and the lifetimes of the D0D^0 and D+D^+ mesons with the value of B(D+Kˉ0μ+νμ){\mathcal B}(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu}) measured in this work, we determine the following ratios of partial widths: Γ(D0Kμ+νμ)/Γ(D+Kˉ0μ+νμ)=0.963±0.044\Gamma(D^0\to K^-\mu^+\nu_\mu)/\Gamma(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=0.963\pm0.044 and Γ(D+Kˉ0μ+νμ)/Γ(D+Kˉ0e+νe)=0.988±0.033\Gamma(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu})/\Gamma(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=0.988\pm0.033.Comment: 9 pages; 8 figure
    corecore