1,597 research outputs found

    Fanconi Anemia Complementation Group D2 (FANCD2) Functions Independently of BRCA2- and RAD51-Associated Homologous Recombination in Response to DNA Damage

    Get PDF
    The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2-FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination

    The Orbit and Position of the X-ray Pulsar XTE J1855-026 - an Eclipsing Supergiant System

    Get PDF
    A pulse timing orbit has been obtained for the X-ray binary XTE J1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of ~16Mo together with the detection of an extended near-total eclipse confirm that the primary star is a supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A. = 18h 55m 31.3s}, decl. = -02o 36' 24.0" (2000) with an estimated systematic uncertainty of less than 12". A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.Comment: Accepted for publication in the Astrophysical Journa

    Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO2_2

    Full text link
    The temperature (TT) dependent metal-insulator transition (MIT) in VO2_2 is investigated using bulk sensitive hard x-ray (∼\sim 8 keV) valence band, core level, and V 2p−3dp-3d resonant photoemission spectroscopy (PES). The valence band and core level spectra are compared with full-multiplet cluster model calculations including a coherent screening channel. Across the MIT, V 3dd spectral weight transfer from the coherent (d1C‾d^1\underbar{\it {C}} final) states at Fermi level to the incoherent (d0+d1L‾d^{0}+d^1\underbar{\it {L}} final) states, corresponding to the lower Hubbard band, lead to gap-formation. The spectral shape changes in V 1ss and V 2pp core levels as well as the valence band are nicely reproduced from a cluster model calculations, providing electronic structure parameters. Resonant-PES finds that the d1L‾d^1\underbar{\it{L}} states resonate across the V 2p−3dp-3d threshold in addition to the d0d^{0} and d1C‾d^1\underbar{\it {C}} states. The results support a Mott-Hubbard transition picture for the first order MIT in VO2_2.Comment: 6 pages, 3 figures. to be published in Phys. Rev.

    Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential

    Full text link
    Spin asymmetry of the ground states is studied for the trapped spin-degenerate (two-component) gases of the fermionic atoms with the repulsive interaction between different components, and, for large particle number, the asymmetric (collective ferromagnetic) states are shown to be stable because it can be energetically favorable to increase the fermi energy of one component rather than the increase of the interaction energy between up-down components. We formulate the Thomas-Fermi equations and show the algebraic methods to solve them. From the Thomas-Fermi solutions, we find three kinds of ground states in finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium) and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin-asymmetries are shown to occur in the central regions of the trapped gas, and grows up with increasing particle number. Based on the obtained results, we discuss the experimental conditions and current difficulties to realize the ferromagnetic states of the trapped atom gas, which should be overcome.Comment: submit to PR

    X-ray Signatures of an Ionized Reprocessor in the Seyfert galaxy Ton S 180

    Full text link
    We discuss the hard X-ray properties of the Seyfert galaxy Ton S 180, based upon the analysis of ASCA data. We find the X-ray flux varied by a factor ~2 on a time scale of a few thousand seconds. The source showed significantly higher amplitude of variability in the 0.5-2 keV band than in the 2-10 keV band. The continuum is adequately parameterized as a Gamma ~ 2.5 power-law across the 0.6--10 keV band . We confirm the recent discovery of an emission line of high equivalent width, due to Fe K-shell emission from highly-ionized material. These ASCA data show the Fe line profile to be broad and asymmetric and tentatively suggest it is stronger during the X-ray flares, consistent with an origin from the inner parts of an accretion disk. The X-ray spectrum is complex below 2 keV, possibly due to emission from a blend of soft X-ray lines, which would support the existence of an ionized reprocessor, most likely due to a relatively high accretion rate in this source.Comment: 24 pages, 8 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journa

    Superfield description of 5D supergravity on general warped geometry

    Full text link
    We provide a systematic and practical method of deriving 5D supergravity action described by 4D superfields on a general warped geometry, including a non-BPS background. Our method is based on the superconformal formulation of 5D supergravity, but is easy to handle thanks to the superfield formalism. We identify the radion superfield in the language of 5D superconformal gravity, and clarify its appearance in the action. We also discuss SUSY breaking effects induced by a deformed geometry due to the backreaction of the radius stabilizer.Comment: 25 pages, no figures, LaTeX, final version to appear in JHE

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Determination of the Fermion Pair Size in a Resonantly Interacting Superfluid

    Full text link
    Fermionic superfluidity requires the formation of pairs. The actual size of these fermion pairs varies by orders of magnitude from the femtometer scale in neutron stars and nuclei to the micrometer range in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in BCS-BEC crossover theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS) type superfluid of loosely bound and large Cooper pairs to Bose-Einstein condensation (BEC) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed with radio-frequency (rf) spectroscopy. Previous work was difficult to interpret due to strong and not well understood final state interactions. Here we realize a new superfluid spin mixture where such interactions have negligible influence and present fermion-pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine the spectroscopic pair size in the resonantly interacting gas to be 2.6(2)/kF (kF is the Fermi wave number). The pairs are therefore smaller than the interparticle spacing and the smallest pairs observed in fermionic superfluids. This finding highlights the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs into bound molecular states and into many-body bound states in the case of strong final state interactions.Comment: 8 pages, 7 figures; Figures updated; New Figures added; Updated discussion of fit function
    • …
    corecore