2,513 research outputs found
Probing Shadowed Nuclear Sea with Massive Gauge Bosons in the Future Heavy-Ion Collisions
The production of the massive bosons and could provide an
excellent tool to study cold nuclear matter effects and the modifications of
nuclear parton distribution functions (nPDFs) relative to parton distribution
functions (PDFs) of a free proton in high energy nuclear reactions at the LHC
as well as in heavy-ion collisions (HIC) with much higher center-of mass
energies available in the future colliders. In this paper we calculate the
rapidity and transverse momentum distributions of the vector boson and their
nuclear modification factors in p+Pb collisions at TeV and in
Pb+Pb collisions at TeV in the framework of perturbative QCD
by utilizing three parametrization sets of nPDFs: EPS09, DSSZ and nCTEQ. It is
found that in heavy-ion collisions at such high colliding energies, both the
rapidity distribution and the transverse momentum spectrum of vector bosons are
considerably suppressed in wide kinematic regions with respect to p+p reactions
due to large nuclear shadowing effect. We demonstrate that in the massive
vector boson productions processes with sea quarks in the initial-state may
give more contributions than those with valence quarks in the initial-state,
therefore in future heavy-ion collisions the isospin effect is less pronounced
and the charge asymmetry of W boson will be reduced significantly as compared
to that at the LHC. Large difference between results with nCTEQ and results
with EPS09 and DSSZ is observed in nuclear modifications of both rapidity and
distributions of and in the future HIC.Comment: 13 pages, 21 figures, version accepted for publication in Eur. Phys.
J.
Alterations in the processing of non-drug-related affective stimuli in abstinent heroin addicts.
Long-term exposure to drug may alter the neural system associated with affective processing, as evidenced by both clinical observations and behavioral data documenting dysfunctions in emotional experiences and processing in drug addicts. Although many imaging studies examined neural responses to drug or drug-related cues in addicts, there have been few studies explicitly designed to reveal their neural abnormalities in processing non-drug-related natural affective materials. The present study asked abstinent heroin addicts and normal controls to passively view standardized affective pictures of positive, negative, or neutral valence and compared their brain activities with functional MRI. Compared to normal controls, addicts showed reduced activation in right amygdala in response to the affective pictures, consistent with previous reports of blunted subjective experience for affective stimuli in addicts. Furthermore, in two visual cortical areas BA 19 and 37, while the controls showed greater responses to positive pictures than to negative ones replicating literature findings, the addicts showed the opposite pattern. The results reveal a complex pattern of altered processing of non-drug-related affective materials in addicts showing both heightened and blunted neural responses in different brain regions and for different stimulus valence. The present study highlights the importance of brain imaging research on drug addicts' processing of affective stimuli in understanding disruptions in their emotion circuitry
Indexing Strategies for Rapid Searches of Short Words in Genome Sequences
Searching for matches between large collections of short (14â30 nucleotides) words and sequence databases comprising full genomes or transcriptomes is a common task in biological sequence analysis. We investigated the performance of simple indexing strategies for handling such tasks and developed two programs, fetchGWI and tagger, that index either the database or the query set. Either strategy outperforms megablast for searches with more than 10,000 probes. FetchGWI is shown to be a versatile tool for rapidly searching multiple genomes, whose performance is limited in most cases by the speed of access to the filesystem. We have made publicly available a Web interface for searching the human, mouse, and several other genomes and transcriptomes with oligonucleotide queries
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Recommended from our members
Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines
Due to the extremely complex working conditions, various health and safety hazards are present in underground coal mines, which cause economic losses and heavy casualties. Among these hazards, methane gas explosion and coal combustion are recognized as the two major hazards to miners. Traditional electronic sensors in mine safety monitoring systems have problems such as low precision, a large amount of maintenance, and monitoring dead zones. In the past decade, gas sensors based on tunable diode laser absorption spectroscopy (TDLAS) have been extensively studied and tailored for use in the coal mine industry because of their advantages of high sensitivity, high stability, fast response, intrinsic safety, and remote monitoring. This invited paper introduces the recent progress and typical applications of TDLAS-based methane sensors, carbon monoxide sensors, and multi-gas monitoring systems in coal mine gas monitoring, fire prevention, and early warning in intelligent coal mines
New measurement of via neutron capture on hydrogen at Daya Bay
This article reports an improved independent measurement of neutrino mixing
angle at the Daya Bay Reactor Neutrino Experiment. Electron
antineutrinos were identified by inverse -decays with the emitted
neutron captured by hydrogen, yielding a data-set with principally distinct
uncertainties from that with neutrons captured by gadolinium. With the final
two of eight antineutrino detectors installed, this study used 621 days of data
including the previously reported 217-day data set with six detectors. The
dominant statistical uncertainty was reduced by 49%. Intensive studies of the
cosmogenic muon-induced Li and fast neutron backgrounds and the
neutron-capture energy selection efficiency, resulted in a reduction of the
systematic uncertainty by 26%. The deficit in the detected number of
antineutrinos at the far detectors relative to the expected number based on the
near detectors yielded in the
three-neutrino-oscillation framework. The combination of this result with the
gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
A new measurement of the reactor antineutrino flux and energy spectrum by the
Daya Bay reactor neutrino experiment is reported. The antineutrinos were
generated by six 2.9~GW nuclear reactors and detected by eight
antineutrino detectors deployed in two near (560~m and 600~m flux-weighted
baselines) and one far (1640~m flux-weighted baseline) underground experimental
halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD)
candidates were detected. The IBD yield in the eight detectors was measured,
and the ratio of measured to predicted flux was found to be
() for the Huber+Mueller (ILL+Vogel) model. A 2.9~
deviation was found in the measured IBD positron energy spectrum compared to
the predictions. In particular, an excess of events in the region of 4-6~MeV
was found in the measured spectrum, with a local significance of 4.4~.
A reactor antineutrino spectrum weighted by the IBD cross section is extracted
for model-independent predictions.Comment: version published in Chinese Physics
Observation of decays into vector meson pairs , , and
Decays of to vector meson pairs , and
are observed for the first time using
\psip events accumulated at the BESIII detector at the BEPCII
collider. The branching fractions are measured to be , , and , for , , and ,
respectively. The observation of decays into a pair of vector
mesons , and indicates that the hadron
helicity selection rule is significantly violated in decays. In
addition, the measurement of gives the rate of doubly
OZI-suppressed decay. Branching fractions for and
decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure
- âŠ