86 research outputs found

    Discrete gap solitons in a diffraction-managed waveguide array

    Full text link
    A model including two nonlinear chains with linear and nonlinear couplings between them, and opposite signs of the discrete diffraction inside the chains, is introduced. For [χ(3)\chi ^{(3)}] nonlinearity, the model finds two different interpretations in terms of optical waveguide arrays, based on the diffraction-management concept. A straightforward discrete [χ(2)\chi ^{(2)}] model, with opposite signs of the diffraction at the fundamental and second harmonics, is introduced also. Starting from the anti-continuum (AC) limit, soliton solutions in the χ(3)\chi ^{(3)} model are found, both above the phonon band and inside the gap. Solitons above the gap may be stable as long as they exist, but in the transition to the continuum limit they inevitably disappear. On the contrary, solitons inside the gap persist all the way up to the continuum limit. In the zero-mismatch case, they lose their stability long before reaching the continuum limit, but finite mismatch can have a stabilizing effect on them. A special procedure is developed to find discrete counterparts of the Bragg-grating gap solitons. It is concluded that they exist all the values of the coupling constant, but are stable only in the AC and continuum limits. Solitons are also found in the χ(2)\chi ^{(2)} model. They start as stable solutions, but then lose their stability. Direct numerical simulations in the cases of instability reveal a variety of scenarios, including spontaneous transformation of the solitons into breather-like states, destruction of one of the components (in favor of the other), and symmetry-breaking effects. Quasi-periodic, as well as more complex, time dependences of the soliton amplitudes are also observed as a result of the instability development.Comment: 18 pages, 27 figures, Eur. Phys. J. D in pres

    PT\mathcal{PT}-Symmetric Periodic Optical Potentials

    Get PDF
    In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT\mathcal{PT}) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn't led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT\mathcal{PT}-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT\mathcal{PT}-symmetric Optics and paved the way for the first experimental observation of PT\mathcal{PT}-symmetry breaking in any physical system. In this paper, we present recent results regarding PT\mathcal{PT}-symmetric Optic

    Nonlinear Schr\"odinger equation for a PT symmetric delta-functions double well

    Full text link
    The time-independent nonlinear Schr\"odinger equation is solved for two attractive delta-function shaped potential wells where an imaginary loss term is added in one well, and a gain term of the same size but with opposite sign in the other. We show that for vanishing nonlinearity the model captures all the features known from studies of PT symmetric optical wave guides, e.g., the coalescence of modes in an exceptional point at a critical value of the loss/gain parameter, and the breaking of PT symmetry beyond. With the nonlinearity present, the equation is a model for a Bose-Einstein condensate with loss and gain in a double well potential. We find that the nonlinear Hamiltonian picks as stationary eigenstates exactly such solutions which render the nonlinear Hamiltonian itself PT symmetric, but observe coalescence and bifurcation scenarios different from those known from linear PT symmetric Hamiltonians.Comment: 16 pages, 9 figures, to be published in Journal of Physics

    Random-Phase Solitons in Nonlinear Periodic Lattices

    Get PDF
    We predict the existence of random phase solitons in nonlinear periodic lattices. These solitons exist when the nonlinear response time is much longer than the characteristic time of random phase fluctuations. The intensity profiles, power spectra, and statistical (coherence) properties of these stationary waves conform to the periodicity of the lattice. The general phenomenon of such solitons is analyzed in the context of nonlinear photonic lattices

    Rotary dipole-mode solitons in Bessel photonic lattices

    Full text link
    We address Bessel photonic lattices of radial symmetry imprinted in cubic Kerr-type nonlinear media and show that they support families of stable dipole-mode solitons featuring two out-of-phase light spots located in different lattice rings. We show that the radial symmetry of the Bessel lattices afford a variety of unique soliton dynamics including controlled radiation-free rotation of the dipole-mode solitons.Comment: 12 pages, 4 figures, to appear in Journal of Optics B: Quantum and Semiclassical Optic

    PT-symmetric optical lattices

    Get PDF
    The basic properties of Floquet-Bloch (FB) modes in parity-time (PT)-symmetric optical lattices are examined in detail. Due to the parity-time symmetry of such complex periodic potentials, the corresponding FB modes are skewed (nonorthogonal) and nonreciprocal. The conjugate pairs of these FB modes are obtained by reflecting both the spatial coordinate and the Bloch momentum number itself. The orthogonality conditions are analytically derived for a single cell, for both a finite and an infinite lattice. Some of the peculiarities associated with the diffraction dynamics in PT lattices such as nonreciprocity, power oscillations, and phase dislocations, are also examined

    Use of Equivalent Hermitian Hamiltonian for PTPT-Symmetric Sinusoidal Optical Lattices

    Full text link
    We show how the band structure and beam dynamics of non-Hermitian PTPT-symmetric sinusoidal optical lattices can be approached from the point of view of the equivalent Hermitian problem, obtained by an analytic continuation in the transverse spatial variable xx. In this latter problem the eigenvalue equation reduces to the Mathieu equation, whose eigenfunctions and properties have been well studied. That being the case, the beam propagation, which parallels the time-development of the wave-function in quantum mechanics, can be calculated using the equivalent of the method of stationary states. We also discuss a model potential that interpolates between a sinusoidal and periodic square well potential, showing that some of the striking properties of the sinusoidal potential, in particular birefringence, become much less prominent as one goes away from the sinusoidal case.Comment: 11 pages, 8 figure

    PT-Symmetric Periodic Optical Potentials

    Get PDF
    In quantum theory, any Hamiltonian describing a physical system is mathematically represented by a self-adjoint linear operator to ensure the reality of the associated observables. In an attempt to extend quantum mechanics into the complex domain, it was realized few years ago that certain non-Hermitian parity-time (PT) symmetric Hamiltonians can exhibit an entirely real spectrum. Much of the reported progress has been remained theoretical, and therefore hasn't led to a viable experimental proposal for which non Hermitian quantum effects could be observed in laboratory experiments. Quite recently however, it was suggested that the concept of PT-symmetry could be physically realized within the framework of classical optics. This proposal has, in turn, stimulated extensive investigations and research studies related to PT-symmetric Optics and paved the way for the first experimental observation of PT-symmetry breaking in any physical system. In this paper, we present recent results regarding PT-symmetric Optics

    Stability of vortex solitons in a photorefractive optical lattice

    Full text link
    Stability of off-site vortex solitons in a photorefractive optical lattice is analyzed. It is shown that such solitons are linearly unstable in both the high and low intensity limits. In the high-intensity limit, the vortex looks like a familiar ring vortex, and it suffers oscillatory instabilities. In the low-intensity limit, the vortex suffers both oscillatory and Vakhitov-Kolokolov instabilities. However, in the moderate-intensity regime, the vortex becomes stable if the lattice intensity or the applied voltage is above a certain threshold value. Stability regions of vortices are also determined at typical experimental parameters.Comment: 3 pages, 5 figure

    Soliton molecules in trapped vector Nonlinear Schrodinger systems

    Full text link
    We study a new class of vector solitons in trapped Nonlinear Schrodinger systems modelling the dynamics of coupled light beams in GRIN Kerr media and atomic mixtures in Bose-Einstein condensates. These solitons exist for different spatial dimensions, their existence is studied by means of a systematic mathematical technique and the analysis is made for inhomogeneous media
    • …
    corecore