100 research outputs found
Linear Depth QFT over IBM Heavy-hex Architecture
Compiling a given quantum algorithm into a target hardware architecture is a
challenging optimization problem. The compiler must take into consideration the
coupling graph of physical qubits and the gate operation dependencies. The
existing noise in hardware architectures requires the compilation to use as few
running cycles as possible. Existing approaches include using SAT solver or
heuristics to complete the mapping but these may cause the issue of either long
compilation time (e.g., timeout after hours) or suboptimal compilation results
in terms of running cycles (e.g., exponentially increasing number of total
cycles).
In this paper, we propose an efficient mapping approach for Quantum Fourier
Transformation (QFT) circuits over the existing IBM heavy-hex architecture.
Such proposal first of all turns the architecture into a structure consisting
of a straight line with dangling qubits, and then do the mapping over this
generated structure recursively. The calculation shows that there is a linear
depth upper bound for the time complexity of these structures and for a special
case where there is 1 dangling qubit in every 5 qubits, the time complexity is
5N+O(1). All these results are better than state of the art methods
Quantifying Inactive Lithium in Lithium Metal Batteries
Inactive lithium (Li) formation is the immediate cause of capacity loss and
catastrophic failure of Li metal batteries. However, the chemical component and
the atomic level structure of inactive Li have rarely been studied due to the
lack of effective diagnosis tools to accurately differentiate and quantify Li+
in solid electrolyte interphase (SEI) components and the electrically isolated
unreacted metallic Li0, which together comprise the inactive Li. Here, by
introducing a new analytical method, Titration Gas Chromatography (TGC), we can
accurately quantify the contribution from metallic Li0 to the total amount of
inactive Li. We uncover that the Li0, rather than the electrochemically formed
SEI, dominates the inactive Li and capacity loss. Using cryogenic electron
microscopies to further study the microstructure and nanostructure of inactive
Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic
conductive pathway to the bulk electrode. Coupling the measurements of the Li0
global content to observations of its local atomic structure, we reveal the
formation mechanism of inactive Li in different types of electrolytes, and
identify the true underlying cause of low Coulombic efficiency in Li metal
deposition and stripping. We ultimately propose strategies to enable the highly
efficient Li deposition and stripping to enable Li metal anode for next
generation high energy batteries
Single Cell Clonotypic and Transcriptional Evolution of Multiple Myeloma Precursor Disease
Multiple myeloma remains an incurable disease, and the cellular and molecular evolution from precursor conditions, including monoclonal gammopathy of undetermined significance and smoldering multiple myeloma, is incompletely understood. Here, we combine single-cell RNA and B cell receptor sequencing from fifty-two patients with myeloma precursors in comparison with myeloma and normal donors. Our comprehensive analysis reveals early genomic drivers of malignant transformation, distinct transcriptional features, and divergent clonal expansion in hyperdiploid versus non-hyperdiploid samples. Additionally, we observe intra-patient heterogeneity with potential therapeutic implications and identify distinct patterns of evolution from myeloma precursor disease to myeloma. We also demonstrate distinctive characteristics of the microenvironment associated with specific genomic changes in myeloma cells. These findings add to our knowledge about myeloma precursor disease progression, providing valuable insights into patient risk stratification, biomarker discovery, and possible clinical applications
Serum MicroRNA Expression Profile Distinguishes Enterovirus 71 and Coxsackievirus 16 Infections in Patients with Hand-Foot-and-Mouth Disease
Altered circulating microRNA (miRNA) profiles have been noted in patients with microbial infections. We compared host serum miRNA levels in patients with hand-foot-and-mouth disease (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) as well as in other microbial infections and in healthy individuals. Among 664 different miRNAs analyzed using a miRNA array, 102 were up-regulated and 26 were down-regulated in sera of patients with enteroviral infections. Expression levels of ten candidate miRNAs were further evaluated by quantitative real-time PCR assays. A receiver operating characteristic (ROC) curve analysis revealed that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) were able to discriminate patients with enterovirus infections from healthy controls with area under curve (AUC) values ranged from 0.828 to 0.934. The combined six miRNA using multiple logistic regression analysis provided not only a sensitivity of 97.1% and a specificity of 92.7% but also a unique profile that differentiated enterovirial infections from other microbial infections. Expression levels of five miRNAs (miR-148a, miR-143, miR-324-3p, miR-545, and miR-140-5p) were significantly increased in patients with CVA16 versus those with EV71 (p<0.05). Combination of miR-545, miR-324-3p, and miR-143 possessed a moderate ability to discrimination between CVA16 and EV71 with an AUC value of 0.761. These data indicate that sera from patients with different subtypes of enteroviral infection express unique miRNA profiles. Serum miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping enteroviral HFMD infections
Gender-Related Differences in the Dysfunctional Resting Networks of Migraine Suffers
BACKGROUND: Migraine shows gender-specific incidence and has a higher prevalence in females. However, little is known about gender-related differences in dysfunctional brain organization, which may account for gender-specific vulnerability and characteristics of migraine. In this study, we considered gender-related differences in the topological property of resting functional networks. METHODOLOGY/PRINCIPAL FINDINGS: Data was obtained from 38 migraine patients (18 males and 20 females) and 38 healthy subjects (18 males and 20 females). We used the graph theory analysis, which becomes a powerful tool in investigating complex brain networks on a whole brain scale and could describe functional interactions between brain regions. Using this approach, we compared the brain functional networks between these two groups, and several network properties were investigated, such as small-worldness, network resilience, nodal centrality, and interregional connections. In our findings, these network characters were all disrupted in patients suffering from chronic migraine. More importantly, these functional damages in the migraine-affected brain had a skewed balance between males and females. In female patients, brain functional networks showed worse resilience, more regions exhibited decreased nodal centrality, and more functional connections revealed abnormalities than in male patients. CONCLUSIONS: These results indicated that migraine may have an additional influence on females and lead to more dysfunctional organization in their resting functional networks
Anemia in relation to body mass index and waist circumference among Chinese women
Extent: 3 p.BACKGROUND: This study aimed to investigate the relationship of anemia and body mass index among adult women in Jiangsu Province, China. Data were collected in a sub-national cross-sectional survey, and 1,537 women aged 20 years and above were included in the analyses. Subjects were classified by body mass index (BMI) categories as underweight, normal weight, overweight and obese according to the Chinese standard. Central obesity was defined as a waist circumference ≥ 80 cm. Anemia was defined as hemoglobin concentration < 12 g/dl. Prevalence ratios (PRs) of the relationship between anemia and BMI or waist circumference were calculated using Poisson regression. FINDINGS: Overall, 31.1% of the Chinese women were anemic. The prevalence of overweight, obesity and central obesity was 34.2%, 5.8% and 36.2%, respectively. The obese group had the highest concentrations of haemoglobin compared with other BMI groups. After adjustment for confounders, overweight and obese women had a lower PR for anemia (PR: 0.72, 95% CI: 0.62-0.89; PR: 0.59, 95% CI: 0.43-0.79). Central obesity was inversely associated with anemia. CONCLUSION: In this Chinese population, women with overweight/obesity or central obesity were less likely to be anemic as compared to normal weight women. No measures are required currently to target anemia specifically for overweight and obese people in China.Yu Qin, Alida Melse-Boonstra, Xiaoqun Pan, Baojun Yuan, Yue Dai, Jinkou Zhao, Michael B. Zimmermann, Frans J. Kok, Minghao Zhou and Zumin Sh
The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling
We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors
Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas
The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design
A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
- …