5,183 research outputs found

    On the eclipsing cataclysmic variable star HBHA 4705-03

    Full text link
    We present observations and analysis of a new eclipsing binary HBHA 4705-03. Using decomposition of the light curve into accretion disk and hot spot components, we estimated photometrically the mass ratio of the studied system to be q=0.62 +-0.07. Other fundamental parameters was found with modeling. This approach gave: white dwarf mass M_1 = (0.8 +- 0.2) M_sun, secondary mass M_2=(0.497 +- 0.05) M_sun, orbital radius a=1.418 R_sun, orbital inclination i = (81.58 +- 0.5) deg, accretion disk radius r_d/a = 0.366 +- 0.002, and accretion rate dot{M} = (2.5 +- 2) * 10^{18}[g/s], (3*10^{-8} [M_sun/yr]). Power spectrum analysis revealed ambiguous low-period Quasi Periodic Oscillations centered at the frequencies f_{1}=0.00076 Hz, f_2=0.00048 Hz and f_3=0.00036 Hz. The B-V=0.04 [mag] color corresponds to a dwarf novae during an outburst. The examined light curves suggest that HBHA 4705-03 is a nova-like variable star.Comment: 7 figures and 2 tables, accepted for publication in Acta Astronomic

    The Future is Now: the Formation of Single Low Mass White Dwarfs in the Solar Neighborhood

    Get PDF
    Low mass helium-core white dwarfs (M < 0.45 Msun) can be produced from interacting binary systems, and traditionally all of them have been attributed to this channel. However, a low mass white dwarf could also result from a single star that experiences severe mass loss on the first ascent giant branch. A large population of low mass He-core white dwarfs has been discovered in the old metal-rich cluster NGC 6791. There is therefore a mechanism in clusters to produce low mass white dwarfs without requiring binary star interactions, and we search for evidence of a similar population in field white dwarfs. We argue that there is a significant field population (of order half of the detected systems) that arises from old metal rich stars which truncate their evolution prior to the helium flash from severe mass loss. There is a consistent absence of evidence for nearby companions in a large fraction of low mass white dwarfs. The number of old metal-rich field dwarfs is also comparable with the apparently single low mass white dwarf population, and our revised estimate for the space density of low mass white dwarfs produced from binary interactions is also compatible with theoretical expectations. This indicates that this channel of stellar evolution, hitherto thought hypothetical only, has been in operation in our own Galaxy for many billions of years. One strong implication of our model is that single low mass white dwarfs should be good targets for planet searches because they are likely to arise from metal-rich progenitors. We also discuss other observational tests and implications, including the potential impact on SN Ia rates and the frequency of planetary nebulae.Comment: ApJ published versio

    Towards the origin of the radio emission in AR Sco, the first radio-pulsing white dwarf binary

    Full text link
    The binary system AR Sco contains an M star and the only known radio-pulsing white dwarf. The system shows emission from radio to X-rays, likely dominated by synchrotron radiation. The mechanism that produces most of this emission remains unclear. Two competing scenarios have been proposed: Collimated outflows, and direct interaction between the magnetospheres of the white dwarf and the M star. The two proposed scenarios can be tested via very long baseline interferometric radio observations. We conducted a radio observation with the Australian Long Baseline Array (LBA) on 20 Oct 2016 at 8.5 GHz to study the compactness of the radio emission. Simultaneous data with the Australian Telescope Compact Array (ATCA) were also recorded for a direct comparison of the obtained flux densities. AR Sco shows radio emission compact on milliarcsecond angular scales (0.02 AU\lesssim 0.02\ \mathrm{AU}, or $4\ \mathrm{R_{\odot}}).Theemissionisorbitallymodulated,withanaveragefluxdensityof). The emission is orbitally modulated, with an average flux density of \approx 6.5\ \mathrm{mJy}$. A comparison with the simultaneous ATCA data shows that no flux is resolved out on mas scales, implying that the radio emission is produced in this compact region. Additionally, the obtained radio light curves on hour timescales are consistent with the optical light curve. The radio emission in AR Sco is likely produced in the magnetosphere of the M star or the white dwarf, and we see no evidence for a radio outflow or collimated jets significantly contributing to the radio emission.Comment: 4 pages, 2 figures, accepted for publication in A&

    The triple degenerate star WD1704+481

    Get PDF
    WD1704+481 is a visual binary in which both components are white dwarfs. We present spectra of the H-alpha line of both stars which show that one component (WD1704+481.2 = Sanduleak B = GR 577) is a close binary with two white dwarf components. Thus, WD1704+481 is the first known triple degenerate star. From radial velocity measurements of the close binary we find an orbital period of 0.1448d, a mass ratio, q=Mbright/Mfaint of q=0.70+-0.03 and a difference in the gravitational redshifts of 11.5+-2.3km/s. The masses of the close pair of white dwarfs predicted by the mass ratio and gravitational redshift difference combined with theoretical cooling curves are 0.39+-0.05 solar mass and 0.56+-0.07 solar masses. WD1704+481 is therefore also likely to be the first example of a double degenerate in which the less massive white dwarf is composed of helium and the other white dwarf is composed of carbon and oxygen.Comment: 5 pages, 4 figure

    The Axiverse Extended: Vacuum Destabilisation, Early Dark Energy and Cosmological Collapse

    Full text link
    A model is presented in the philosophy of the "String Axiverse" of Arvanitaki et al (arXiv:0905.4720v2 [hep-th]) that incorporates a coupling of ultralight axions to their corresponding moduli through the mass term. The light fields roll in their potentials at late times and contribute to the dark sector energy densities in the cosmological expansion. The addition of a coupling and extra field greatly enrich the possible phenomenology of the axiverse. There are a number of interesting phases where the axion and modulus components behave as Dark Matter or Dark Energy and can have considerable and distinct effects on the expansion history of the universe by modifying the equation of state in the past or causing possible future collapse of the universe. In future such a coupling may help to alleviate fine tuning problems for cosmological axions. We motivate and present the model, and briefly explore its cosmological consequences numerically.Comment: 13 pages, 17 figures, published in PRD. v3: corrected SUSY interpretation of axion potential scal

    National Environmental Factors for Implementing Total Quality Environmental Management in the Libyan Food Industry

    Get PDF
    Aims: Investigates national environmental factors on implementing total quality environmental management (TQEM) in the Libyan food industry (LFI), in order to develop modern managerial techniques. Study Design: A questionnaire was conducted with 62 managers and 518 employees from three companies in the LFI. Place and Duration of Study: The study was carried out in Libya, the fieldwork was conducted in 2013. Methodology: Using existing measures obtained from the literature and new ones specifically developed for this research, a battery of items was derived to investigate technical capability, organizational culture, competition, government policy and human resource. Results: The results revealed that, five national environmental factors are identified. The findings show that the social responsibility factor is a new phenomenon that has not generally been studied in Libya, and particularly not in the LFI. Conclusion: This research contributes to the knowledge by investigating the national environmental factors for implementation of TQEM in a different context (i.e., the Arab/North African context). The findings provide a valuable basis to establish a framework model for the implementation of the TQEM in the Libyan context

    Strong supernovae bounds on ALPs from quantum loops

    Full text link
    We show that in theories of axionlike particles (ALPs) coupled to electrons at tree-level, the one-loop effective coupling to photons is process dependent: the effective coupling relevant for decay processes, gaγ(D)g_{a\gamma}^{\text{(D)}}, differs significantly from the coupling appearing in the phenomenologically important Primakoff process, gaγ(P)g_{a\gamma}^{\text{(P)}}. We show that this has important implications for the physics of massive ALPs in hot and dense environments, such as supernovae. We derive, as a consequence, new limits on the ALP-electron coupling, g^ae\hat{g}_{ae}, from SN 1987A by accounting for all relevant production processes, including one-loop processes, and considering bounds from excess cooling as well as the absence of an associated gamma-ray burst from ALP decays. Our limits are among the strongest to date for ALP masses in the range 0.03MeV<ma<240MeV0.03 \, \text{MeV} \, < m_a< 240 \, \text{MeV}. Moreover, we also show how cosmological bounds on the ALP-photon coupling translate into new, strong limits on g^ae\hat{g}_{ae} at one loop. Our analysis emphasises that large hierarchies between ALP effective couplings are difficult to realise once quantum loops are taken into account.Comment: 36 pages, 10 figures. Changes in v2: gravitational redshift taken into account, small corrections. This is an author-created, un-copyedited version of an article published in JCAP. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    The origin of sdB stars (II)

    Get PDF
    We have carried out a detailed binary populations synthesis (BPS) study of the formation of subdwarf B (sdB) stars and related objects (sdO, sdOB stars) using the latest version of the BPS code developed by Han et al.(1994, 1995a, 1995b, 1998, 2001). We systematically investigate the importance of the five main evolutionary channels in which the sdB stars form after one or two common-envelope (CE) phases, one or two phases of stable Roche-lobe overflow (RLOF) or as the result of the merger of two helium white dwarfs (WD) (see Han et al. 2002, Paper I). Our best BPS model can satisfactorily explain the main observational characteristics of sdB stars, in particular their distributions in the orbital period - minimum companion mass diagram and in the effective temperature - surface gravity diagram, their distributions of orbital period, log (g theta^4), and mass function, their binary fraction and the fraction of sdB binaries with WD companions, their birthrates and their space density. We obtain a Galactic formation rate, a total number in the Galaxy, the intrinsic binary fraction for sdB stars. We also predict a distribution of masses for sdB stars that is wider than is commonly assumed and that some sdB stars have companions of spectral type as early as B. The percentage of A type stars with sdB companions can in principle be used to constrain some of the important parameters in the binary evolution model. We conclude that (a) the first RLOF phase needs to be more stable than is commonly assumed; (b) mass transfer in the first stable RLOF phase is non-conservative, and the mass lost from the system takes away a specific angular momentum similar to that of the system; (c) common-envelope ejection is very efficient
    corecore