102 research outputs found

    Mosaic trisomy 22 in a 4-year-old boy with congenital heart disease and general hypotrophy: A case report

    Get PDF
    Background: Trisomy 22 mosaicism is a rare autosomal anomaly with survival compatibility. Recognition of the complete trisomy 22 which is incompatible with life from the mosaic form is critical for genetic counseling. Affected mosaic cases have prevalent clinical presentations such as webbed neck, developmental delay, abnormal ears, cardiac disorders, and microcephaly. Phenotype of these patients is milder than full chromosomal aneuploidy, and the severity of the phenotype depends on the count of trisomic cells. We describe a 4-year-old boy with mosaic trisomy 22 from healthy parents and no family history of any genetic disorders in the pedigree. Method and Results: The patient had determined dysmorphic clinical features including facial asymmetry, cleft palate, gastroenteritis, hydronephrosis, developmental delay, genital anomalies, dysplastic toenails, flattened nasal bridge, congenital heart defect, hearing loss, cryptorchidism, and hypotonic muscle. He is the first reported with hypothyroidism and larynx wall thickness in worldwide and the first with atrial septal defect (ASD) from Iran. Chromosomal analyses using G-banding indicated a de novo Mos 47,XY,+22(6)/46,XY(44) karyotype with no other chromosomal structural changes. Conclusions: Our observations confirm the importance of cytogenetic analyses for determining the cause of congenital anomalies and provide a useful genetic counseling. In addition, due to the fact that some of mosaic trisomy 22 features are unavoidable such as CHD and general hypotrophy, we suggest including echocardiography test for early diagnosis during the clinical assessment. © 2018 Wiley Periodicals, Inc

    Biased estimates of clonal evolution and subclonal heterogeneity can arise from PCR duplicates in deep sequencing experiments

    Get PDF
    Accurate allele frequencies are important for measuring subclonal heterogeneity and clonal evolution. Deep-targeted sequencing data can contain PCR duplicates, inflating perceived read depth. Here we adapted the Illumina TruSeq Custom Amplicon kit to include single molecule tagging (SMT) and show that SMT-identified duplicates arise from PCR. We demonstrate that retention of PCR duplicate reads can imply clonal evolution when none exists, while their removal effectively controls the false positive rate. Additionally, PCR duplicates alter estimates of subclonal heterogeneity in tumor samples. Our method simplifies PCR duplicate identification and emphasizes their removal in studies of tumor heterogeneity and clonal evolution

    Seizure as the early and main manifestation of infantile vanishing white matter disease: A case report

    Get PDF
    Introduction: Vanishing white matter disease (VWM) is considered as one of the most frequent types of inherited childhood leukoencephalopathies. Various neurological and non-neurological manifestations have been reported in this type of leukodystrophy; however, seizures are rarely described in infantile type of VWM. Case Presentation: To patient is a 12 months old boy who experienced frequent seizures at 4th month of age. The seizures were resistant to anti-epileptic drugs and caused 3 periods of hospitalization. Magnetic resonance imaging (MRI) demonstrated demyeli-nating pattern and whole exome sequencing (WES) reported homozygous mutation (c.922G > A) in EIF2B2 gene in exon 8 leading to an amino-acid substitution (p.Val308Met). Conclusions: Infantile onset of vanishing white matter disease can be considered as one of few childhood leukodystrophies that are associated with early onset seizures. © 2018, Iranian Journal of Pediatrics

    Investigation of chromosomal abnormalities and microdeletion/ microduplication(s) in fifty Iranian patients with multiple congenital anomalies

    Get PDF
    Objective: Major birth defects are inborn structural or functional anomalies with long-term disability and adverse impacts on individuals, families, health-care systems, and societies. Approximately 20 of birth defects are due to chromosomal and genetic conditions. Inspired by the fact that neonatal deaths are caused by birth defects in about 20 and 10 of cases in Iran and worldwide respectively, we conducted the present study to unravel the role of chromosome abnormalities, including microdeletion/microduplication(s), in multiple congenital abnormalities in a number of Iranian patients. Materials and Methods: In this descriptive cross-sectional study, 50 sporadic patients with Multiple Congenital Anomalies (MCA) were selected. The techniques employed included conventional karyotyping, fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and array comparative genomic hybridisation (array-CGH), according to the clinical diagnosis for each patient. Results: Chromosomal abnormalities and microdeletion/microduplication(s) were observed in eight out of fifty patients (16). The abnormalities proved to result from the imbalances in chromosomes 1, 3, 12, and 18 in four of the patients. However, the other four patients were diagnosed to suffer from the known microdeletions of 22q11.21, 16p13.3, 5q35.3, and 7q11.23. Conclusion: In the present study, we report a patient with 46,XY, der(18)12/46,XY, der(18), +mar8 dn presented with MCA associated with hypogammaglobulinemia. Given the patient�s seemingly rare and highly complex chromosomal abnormality and the lack of any concise mechanism presented in the literature to justify the case, we hereby propose a novel mechanism for the formation of both derivative and ring chromosome 18. In addition, we introduce a new 12q abnormality and a novel association of an Xp22.33 duplication with 1q43q44 deletion syndrome. The phenotype analysis of the patients with chromosome abnormality would be beneficial for further phenotype-genotype correlation studies. © 2019 Royan Institute (ACECR). All rights reserved

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    The Household Water Insecurity Experiences (HWISE) Scale: comparison scores from 27 sites in 22 countries

    Get PDF
    Abstract Household survey data from 27 sites in 22 countries were collected in 2017–2018 in order to construct and validate a cross-cultural household-level water insecurity scale. The resultant Household Water Insecurity Experiences (HWISE) scale presents a useful tool for monitoring and evaluating water interventions as a complement to traditional metrics used by the development community. It can also help track progress toward achievement of Sustainable Development Goal 6 ‘clean water and sanitation for all’. We present HWISE scale scores from 27 sites as comparative data for future studies using the HWISE scale in low- and middle-income contexts. Site-level mean scores for HWISE-12 (scored 0–36) ranged from 1.64 (SD 4.22) in Pune, India, to 20.90 (7.50) in Cartagena, Colombia, while site-level mean scores for HWISE-4 (scored 0–12) ranged from 0.51 (1.50) in Pune, India, to 8.21 (2.55) in Punjab, Pakistan. Scores tended to be higher in the dry season as expected. Data from this first implementation of the HWISE scale demonstrate the diversity of water insecurity within and across communities and can help to situate findings from future applications of this tool

    Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

    Get PDF
    BACKGROUND: ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. METHODOLOGY/PRINCIPAL FINDINGS: FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. CONCLUSIONS: These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening
    corecore