5,824 research outputs found
Distributed Optimal Frequency Control Considering a Nonlinear Network-Preserving Model
This paper addresses the distributed optimal frequency control of power
systems considering a network-preserving model with nonlinear power flows and
excitation voltage dynamics. Salient features of the proposed distributed
control strategy are fourfold: i) nonlinearity is considered to cope with large
disturbances; ii) only a part of generators are controllable; iii) no load
measurement is required; iv) communication connectivity is required only for
the controllable generators. To this end, benefiting from the concept of
'virtual load demand', we first design the distributed controller for the
controllable generators by leveraging the primal-dual decomposition technique.
We then propose a method to estimate the virtual load demand of each
controllable generator based on local frequencies. We derive incremental
passivity conditions for the uncontrollable generators. Finally, we prove that
the closed-loop system is asymptotically stable and its equilibrium attains the
optimal solution to the associated economic dispatch problem. Simulations,
including small and large-disturbance scenarios, are carried on the New England
system, demonstrating the effectiveness of our design
World-line Quantisation of a Reciprocally Invariant System
We present the world-line quantisation of a system invariant under the
symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase
space coordinates" which preserve the Minkowski
metric and the symplectic form, and global shifts in these coordinates,
together with coordinate dependent transformations of an additional compact
phase coordinate, ). The action is that of free motion over the
corresponding Weyl-Heisenberg group. Imposition of the first class constraint,
the generator of local time reparametrisations, on physical states enforces
identification of the world-line cosmological constant with a fixed value of
the quadratic Casimir of the quaplectic symmetry group , the semi-direct product of the pseudo-unitary group with
the Weyl-Heisenberg group (the central extension of the global translation
group, with central extension associated to the phase variable ).
The spacetime spectrum of physical states is identified. Even though for an
appropriate range of values the restriction enforced by the cosmological
constant projects out negative norm states from the physical spectrum, leaving
over spin zero states only, the mass-squared spectrum is continuous over the
entire real line and thus includes a tachyonic branch as well
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
NICMOS Imaging of the Nuclei of Arp 220
We report high resolution imaging of the ultraluminous infrared galaxy Arp
220 at 1.1, 1.6, and 2.22 microns with NICMOS on the HST. The
diffraction-limited images at 0.1--0.2 arcsecond resolution clearly resolve
both nuclei of the merging galaxy system and reveal for the first time a number
of luminous star clusters in the circumnuclear envelope. The morphologies of
both nuclei are strongly affected by dust obscuration, even at 2.2 microns :
the primary nucleus (west) presents a crescent shape, concave to the south and
the secondary (eastern) nucleus is bifurcated by a dust lane with the southern
component being very reddened. In the western nucleus, the morphology of the
2.2 micron emission is most likely the result of obscuration by an opaque disk
embedded within the nuclear star cluster. The morphology of the central
starburst-cluster in the western nucleus is consistent with either a
circumnuclear ring of star formation or a spherical cluster with the bottom
half obscured by the embedded dust disk. Comparison of cm-wave radio continuum
maps with the near-infrared images suggests that the radio nuclei lie in the
dust disk on the west and near the highly reddened southern component of the
eastern complex. The radio nuclei are separated by 0.98 arcseconds
(corresponding to 364 pc at 77 Mpc) and the half-widths of the infrared nuclei
are approximately 0.2-0.5 arcseconds. At least 8, unresolved infrared sources
-- probably globular clusters -- are also seen in the circumnuclear envelope at
radii 2-7 arcseconds . Their near-infrared colors do not significantly
constrain their ages.Comment: LaTex, 15 pages with 1 gif figure and 5 postscript figures. ApJL
accepte
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
Sunspot rotation, filament, and flare: The event on 2000 February 10
We find that a sunspot with positive polarity had an obvious
counter-clockwise rotation and resulted in the formation and eruption of an
inverse S-shaped filament in NOAA active region (AR) 08858 from 2000 February 9
to 10. The sunspot had two umbrae which rotated around each other by 195
degrees within about twenty-four hours. The average rotation rate was nearly 8
degrees per hour. The fastest rotation in the photosphere took place during
14:00UT to 22:01UT on February 9, with the rotation rate of nearly 16 degrees
per hour. The fastest rotation in the chromosphere and the corona took place
during 15:28UT to 19:00UT on February 9, with the rotation rate of nearly 20
degrees per hour. Interestingly, the rapid increase of the positive magnetic
flux just occurred during the fastest rotation of the rotating sunspot, the
bright loop-shaped structure and the filament. During the sunspot rotation, the
inverse S-shaped filament gradually formed in the EUV filament channel. The
filament experienced two eruptions. In the first eruption, the filament rose
quickly and then the filament loops carrying the cool and the hot material were
seen to spiral into the sunspot counterclockwise. About ten minutes later, the
filament became active and finally erupted. The filament eruption was
accompanied with a C-class flare and a halo coronal mass ejection (CME). These
results provide evidence that sunspot rotation plays an important role in the
formation and eruption of the sigmoidal active-region filament.Comment: 20 pages, 9 figures, Accepted for publication in Ap
Sum Rule Description of Color Transparency
The assumption that a small point-like configuration does not interact with
nucleons leads to a new set of sum rules that are interpreted as models of the
baryon-nucleon interaction. These models are rendered semi-realistic by
requiring consistency with data for cross section fluctuations in proton-proton
diffractive collisions.Comment: 22 pages + 3 postscript figures attache
Multiple-Scattering Series For Color Transparency
Color transparency CT depends on the formation of a wavepacket of small
spatial extent. It is useful to interpret experimental searches for CT with a
multiple scattering scattering series based on wavepacket-nucleon scattering
instead of the standard one using nucleon-nucleon scattering. We develop
several new techniques which are valid for differing ranges of energy. These
techniques are applied to verify some early approximations; study new forms of
the wave-packet-nucleon interaction; examine effects of treating wave packets
of non-zero size; and predict the production of 's in electron scattering
experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9
Higgs After the Discovery: A Status Report
Recently, the ATLAS and CMS collaborations have announced the discovery of a
125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and
2012 LHC and Tevatron Higgs data in the context of simplified new physics
models, paying close attention to models which can enhance the diphoton rate
and allow for a natural weak-scale theory. Combining the available LHC and
Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels,
we derive constraints on the effective low-energy theory of the Higgs boson. We
map several simplified scenarios to the effective theory, capturing numerous
new physics models such as supersymmetry, composite Higgs, dilaton. We further
study models with extended Higgs sectors which can naturally enhance the
diphoton rate. We find that the current Higgs data are consistent with the
Standard Model Higgs boson and, consequently, the parameter space in all models
which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and
doublet-singlet bugs corrected, references added; v3: ATLAS WW channel
included, comments and references adde
- …
