193 research outputs found

    Interactions between planets and evolved stars

    Get PDF
    Searching for planetary companions to evolved stars (e.g., white dwarfs (WD) and Cataclysmic Variables (CV)) can provide insight into the interaction between planets and evolved stars as well as on the ultimate fate of planets. We have monitored decades of CVs and their progenitors including some detached WD binaries since 2006 to search for planets orbiting these systems. In the present paper, we will show some observational results of circumbinary planets in orbits around CVs and their progenitors. Some of our findings include planets with the shortest distance to the central evolved binaries and a few multiple planetary systems orbiting binary stars. Finally, by comparing the observational properties of planetary companions to single WDs and WD binaries, the interaction between planets and evolved stars and the ultimate fate of planets are discussed.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    SOX9 Regulates Cancer Stem-Like Properties and Metastatic Potential of Single-Walled Carbon Nanotube-Exposed Cells

    Get PDF
    Engineered nanomaterials hold great promise for the future development of innovative products but their adverse health effects are a major concern. Recent studies have indicated that certain nanomaterials, including carbon nanotubes (CNTs), may be carcinogenic. However, the underlying mechanisms behind their potential malignant properties remain unclear. In this study, we linked SOX9, a stem cell associated transcription factor, to the neoplastic-like properties of human lung epithelial cells chronically exposed to a low-dose of single-walled carbon nanotubes (SWCNTs). We found that SOX9 is upregulated in SWCNT-exposed cells, which is consistent with their abilities to induce tumor formation and metastasis in vivo. We therefore hypothesized that SOX9 overexpression may be responsible for the neoplastic-like phenotype observed in our model. Indeed, SOX9 knockdown inhibited anchorage-independent cell growth in vitro and lung colonization in vivo in a mouse xenograft model. SOX9 depletion also suppressed the formation of cancer stem-like cells (CSCs), as determined by tumor sphere formation and aldehyde dehydrogenase (ALDH) activity (Aldefluor) assays. Furthermore, SOX9 knockdown suppressed tumor metastasis and the expression of the stem cell marker ALDH1A1. Taken together, our findings provide a mechanistic insight into SWCNT-induced carcinogenesis and the role of SOX9 in CSC regulation and metastasis

    Gene capture prediction and overlap estimation in EST sequencing from one or multiple libraries

    Get PDF
    BACKGROUND: In expressed sequence tag (EST) sequencing, we are often interested in how many genes we can capture in an EST sample of a targeted size. This information provides insights to sequencing efficiency in experimental design, as well as clues to the diversity of expressed genes in the tissue from which the library was constructed. RESULTS: We propose a compound Poisson process model that can accurately predict the gene capture in a future EST sample based on an initial EST sample. It also allows estimation of the number of expressed genes in one cDNA library or co-expressed in two cDNA libraries. The superior performance of the new prediction method over an existing approach is established by a simulation study. Our analysis of four Arabidopsis thaliana EST sets suggests that the number of expressed genes present in four different cDNA libraries of Arabidopsis thaliana varies from 9155 (root) to 12005 (silique). An observed fraction of co-expressed genes in two different EST sets as low as 25% can correspond to an actual overlap fraction greater than 65%. CONCLUSION: The proposed method provides a convenient tool for gene capture prediction and cDNA library property diagnosis in EST sequencing

    Foregut microbiome in development of esophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA

    Effect of Fiber Length on Carbon Nanotube-Induced Fibrogenesis

    Get PDF
    Given their extremely small size and light weight, carbon nanotubes (CNTs) can be readily inhaled by human lungs resulting in increased rates of pulmonary disorders, particularly fibrosis. Although the fibrogenic potential of CNTs is well established, there is a lack of consensus regarding the contribution of physicochemical attributes of CNTs on the underlying fibrotic outcome. We designed an experimentally validated in vitro fibroblast culture model aimed at investigating the effect of fiber length on single-walled CNT (SWCNT)-induced pulmonary fibrosis. The fibrogenic response to short and long SWCNTs was assessed via oxidative stress generation, collagen expression and transforming growth factor-beta (TGF-β) production as potential fibrosis biomarkers. Long SWCNTs were significantly more potent than short SWCNTs in terms of reactive oxygen species (ROS) response, collagen production and TGF-β release. Furthermore, our finding on the length-dependent in vitro fibrogenic response was validated by the in vivolung fibrosis outcome, thus supporting the predictive value of the in vitro model. Our results also demonstrated the key role of ROS in SWCNT-induced collagen expression and TGF-β activation, indicating the potential mechanisms of length-dependent SWCNT-induced fibrosis. Together, our study provides new evidence for the role of fiber length in SWCNT-induced lung fibrosis and offers a rapid cell-based assay for fibrogenicity testing of nanomaterials with the ability to predict pulmonary fibrogenic response in viv

    Study of the plutino object (208996) 2003 AZ84 from stellar occultations: size, shape and topographic features

    Full text link
    We present results derived from four stellar occultations by the plutino object (208996) 2003~AZ84_{84}, detected at January 8, 2011 (single-chord event), February 3, 2012 (multi-chord), December 2, 2013 (single-chord) and November 15, 2014 (multi-chord). Our observations rule out an oblate spheroid solution for 2003~AZ84_{84}'s shape. Instead, assuming hydrostatic equilibrium, we find that a Jacobi triaxial solution with semi axes (470±20)×(383±10)×(245±8)(470 \pm 20) \times (383 \pm 10) \times (245 \pm 8)~km % axis ratios b/a=0.82±0.05b/a= 0.82 \pm 0.05 and c/a=0.52±0.02c/a= 0.52 \pm 0.02, can better account for all our occultation observations. Combining these dimensions with the rotation period of the body (6.75~h) and the amplitude of its rotation light curve, we derive a density ρ=0.87±0.01\rho=0.87 \pm 0.01~g~cm3^{-3} a geometric albedo pV=0.097±0.009p_V= 0.097 \pm 0.009. A grazing chord observed during the 2014 occultation reveals a topographic feature along 2003~AZ84_{84}'s limb, that can be interpreted as an abrupt chasm of width 23\sim 23~km and depth >8> 8~km or a smooth depression of width 80\sim 80~km and depth 13\sim 13~km (or an intermediate feature between those two extremes)

    Experimentally Engineering the Edge Termination of Graphene Nanoribbons

    Full text link
    The edges of graphene nanoribbons (GNRs) have attracted much interest due to their potentially strong influence on GNR electronic and magnetic properties. Here we report the ability to engineer the microscopic edge termination of high quality GNRs via hydrogen plasma etching. Using a combination of high-resolution scanning tunneling microscopy and first-principles calculations, we have determined the exact atomic structure of plasma-etched GNR edges and established the chemical nature of terminating functional groups for zigzag, armchair and chiral edge orientations. We find that the edges of hydrogen-plasma-etched GNRs are generally flat, free of structural reconstructions and are terminated by hydrogen atoms with no rehybridization of the outermost carbon edge atoms. Both zigzag and chiral edges show the presence of edge states.Comment: 16+9 pages, 3+4 figure

    Oral Microbiome Profiles: 16S rRNA Pyrosequencing and Microarray Assay Comparison

    Get PDF
    The human oral microbiome is potentially related to diverse health conditions and high-throughput technology provides the possibility of surveying microbial community structure at high resolution. We compared two oral microbiome survey methods: broad-based microbiome identification by 16S rRNA gene sequencing and targeted characterization of microbes by custom DNA microarray.Oral wash samples were collected from 20 individuals at Memorial Sloan-Kettering Cancer Center. 16S rRNA gene survey was performed by 454 pyrosequencing of the V3–V5 region (450 bp). Targeted identification by DNA microarray was carried out with the Human Oral Microbe Identification Microarray (HOMIM). Correlations and relative abundance were compared at phylum and genus level, between 16S rRNA sequence read ratio and HOMIM hybridization intensity.; Correlation = 0.70–0.84).Microbiome community profiles assessed by 16S rRNA pyrosequencing and HOMIM were highly correlated at the phylum level and, when comparing the more commonly detected taxa, also at the genus level. Both methods are currently suitable for high-throughput epidemiologic investigations relating identified and more common oral microbial taxa to disease risk; yet, pyrosequencing may provide a broader spectrum of taxa identification, a distinct sequence-read record, and greater detection sensitivity
    corecore