828 research outputs found

    An efficient system for the production of the medicinally important plant: Asparagus cochinchinensis (Lour.) Merr.

    Get PDF
    An in vitro cultivation protocol was developed for Asparagus cochinchinensis a species threatened by over collection due to its importance as a medicinal plant in China. Adventitious shoot induction was most successful by using hypocotyls as explants for propagation on Murashige and Skoog (Murashige et al., 1962) medium supplemented with 4.5 μM N6-benzylaminopurine (BA) only as well as with 3.0 μM α- naphthalene acetic acid (NAA) and 4.5 μM BA. For continuous subculture, indole-3-acetic acid (IAA) and BA (μM) at a ratio of 3.0:4.5 or 3.0:9.0 had the best regeneration potential producing approximately four plantlets per nodal explants. Plantlets had 4 – 5 nodes that could be utilized for the following subculture phase to induce axillary shoots. The plantlets were placed on ½-strength MS medium, indole-3-butyric acid (IBA) was included in the media at a concentration of 2.5 or 5.0 M. This propagation regime has the capacity for producing 1000 – 2000 plants from one shoot after 3 months long subculture cycles, making it highly attractive for implementation as an in vitro conservation strategy. The micropropagated plants were easily acclimatized (80%) within a month after rooting in vitro and being planted ex vitro in a sand : soil : peat moss : vermiculite (1:2:1:1; v/v/v/v) mixture.Key words: Medicinal herbs, Asparagus cochinchinensis (Lour.) Merr., micropropagation

    Infall, Fragmentation and Outflow in Sgr B2

    Full text link
    Observations of H2_{2}CO lines and continuum at 1.3 mm towards Sgr B2(N) and Sgr B2(M) cores were carried out with the SMA. We imaged H2_{2}CO line absorption against the continuum cores and the surrounding line emission clumps. The results show that the majority of the dense gas is falling into the major cores where massive stars have been formed. The filaments and clumps of the continuum and gas are detected outside of Sgr B2(N) and Sgr B2(M) cores. Both the spectra and moment analysis show the presence of outflows from Sgr B2(M) cores. The H2_{2}CO gas in the red-shifted outflow of Sgr B2(M) appears to be excited by a non-LTE process which might be related to the shocks in the outflow.Comment: 5 pages, 3 figures, Published in J. Physics Conference Serie

    Possible Way to Synthesize Superheavy Element Z=117

    Full text link
    Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl

    A Renormalizable Supersymmetric SU(5) Model

    Full text link
    In the Supersymmetric SU(5) Model of Unification with the Missing Partner Mechanism, we present a renormalizable model using the Georgi-Jarlsog mechanism to describe the fermion masses and mixing. At the meantime the proton decay rates are also suppressed to satisfy the experimental data

    The radio counter-jet of the QSO 3C~48

    Full text link
    We present multi--frequency radio observational results of the quasar 3C~48. The observations were carried out with the Very Large Array (VLA) at five frequencies of 0.33, 1.5, 4.8, 8.4, and 22.5 GHz, and with the Multi--Element Radio Linked Interferometer Network (MERLIN) at the two frequencies of 1.6 and 5 GHz. The source shows a one--sided jet to the north within 1\arcsec, which then extends to the northeast and becomes diffuse. Two bright components (N2 and N3), containing most of the flux density are present in the northern jet. The spectral index of the two components is αN20.99±0.12\alpha_{N2}\sim-0.99\pm0.12 and αN30.84±0.23\alpha_{N3}\sim-0.84\pm0.23 (SναS\propto\nu^{\alpha}). Our images show the presence of an extended structure surrounding component N2, suggestive of strong interaction between the jet and the interstellar medium (ISM) of the host galaxy. A steep--spectrum component, labelled as S, located 0.25 ardsec southwest to the flat--spectrum component which could be the core of 3C 48, is detected at a significance of >15σ>15\sigma. Both the location and the steepness of the spectrum of component S suggest the presence of a counter--jet in 3C 48.Comment: 7 pages, 6 figures, accepted by A&

    Simultaneous multi-wavelength observations of the TeV Blazar Mrk 421 during February - March 2003: X-ray and NIR correlated variability

    Full text link
    In the present paper, we have reported the result of simultaneous multi-wavelength observations of the TeV blazar Mrk 421 during February - March 2003. In this period, we have observed Mrk 421 using Pachmarhi Array of \v{C}erenkov Telescopes (PACT) of Tata Institute of Fundamental Research at Pachmarhi, India. Other simultaneous data were taken from the published literature and public data archives. We have analyzed the high quality X-ray (2-20 keV) observations from the NASA Rossi X-Ray Timing Explorer (RXTE). We have seen a possible correlated variability between X-ray and J band (1.25 μ\mu) near infrared (NIR) wavelength. This is the first case of X-ray and NIR correlated variability in Mrk 421 or any high energy peaked (HBL) blazar. The correlated variability reported here is indicating a similar origin for NIR and X-ray emission. The emission is not affected much by the environment of the surrounding medium around the central engine of the Mrk 421. The observations are consistent with the shock-in-jet model for the emission of radiations.Comment: 11 pages, 5 figures, Accepted for Publication in ChJA

    Efficient and long-lived quantum memory with cold atoms inside a ring cavity

    Full text link
    Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.Comment: 6 pages, 4 figure

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Cloning of a Novel Protein Interacting with BRS-3 and Its Effects in Wound Repair of Bronchial Epithelial Cells

    Get PDF
    Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells. Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%. Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs

    Normal Mouse Intestinal Epithelial Cells as a Model for the in vitro Invasion of Trichinella spiralis Infective Larvae

    Get PDF
    It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche
    corecore