9,029 research outputs found

    A Hessenberg Markov chain for fast fibre delay line length optimization

    Get PDF
    In this paper we present an approach to compute the invariant vector of the N + 1 state Markov chain P presented in (Rogiest et al., Lecture Notes in Computer Science, NET-COOP 2007 Special Issue, pp. 4465:185-194) to determine the loss rate of an FDL buffer consisting of N lines, by solving a related Hessenberg system (i.e., a Markov chain skip-free in one direction). This system is obtained by inserting additional time instants in the sample paths of P and allows us to compute the loss rate for various FDL lengths by solving a single system. This is shown to be especially effective in reducing the computation time of the heuristic LRA algorithm presented in (Lambert et al., Proc. NAEC 2005, pp. 545-555) to optimize the FDL lengths, where improvements of several orders of magnitude can be realized

    Substrate Integrated Waveguide Filters based on Even-And Odd-Mode Predistortion Technique

    Get PDF
    Novel techniques for the design of predistorted Substrate Integrated Waveguide (SIW) bandpass and bandstop filter are presented. The techniques allow for the realization of lossy filters with ideal lossless transmission and reflection response, offset by a constant amount. Two prototype third-degree Chebyshev bandpass and Inverse Chebyshev bandstop filters are proposed and designed. The two SIW filters having the same center frequency of 6.5 GHz and bandwidth of 125 MHz are implemented on RT/Duroid 4350 substrate with thickness of 0.508 mm. Experimental results show excellent agreement with simulated performance. These new class of filters would be useful in microwave systems where the increased insertion loss can be tolerated, such as in a satellite IMU

    A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling

    Get PDF
    Tissue organization and patterning are critical during development when genetically identical cells take on different fates. Lateral signalling plays an important role in this process by helping to generate self-organized spatial patterns in an otherwise uniform collection of cells. Recent data suggest that lateral signalling can be mediated both by junctional contacts between neighbouring cells and via cellular protrusions that allow non-neighbouring cells to interact with one another at a distance. However, it remains unclear precisely how signalling mediated by these distinct types of cell-cell contact can physically contribute to the generation of complex patterns without the assistance of diffusible morphogens or pre-patterns. To explore this question, in this work we develop a model of lateral signalling based on a single receptor/ligand pair as exemplified by Notch and Delta. We show that allowing the signalling kinetics to differ at junctional versus protrusion-mediated contacts, an assumption inspired by recent data which show that the cleavage of Notch in several systems requires both Delta binding and the application of mechanical force, permits individual cells to act to promote both lateral activation and lateral inhibition. Strikingly, under this model, in which Delta can sequester Notch, a variety of patterns resembling those typical of reaction-diffusion systems is observed, together with more unusual patterns that arise when we consider changes in signalling kinetics, and in the length and distribution of protrusions. Importantly, these patterns are self-organizing-so that local interactions drive tissue-scale patterning. Together, these data show that protrusions can, in principle, generate different types of patterns in addition to contributing to long-range signalling and to pattern refinement

    Maximal-entropy random walk unifies centrality measures

    Full text link
    In this paper analogies between different (dis)similarity matrices are derived. These matrices, which are connected to path enumeration and random walks, are used in community detection methods or in computation of centrality measures for complex networks. The focus is on a number of known centrality measures, which inherit the connections established for similarity matrices. These measures are based on the principal eigenvector of the adjacency matrix, path enumeration, as well as on the stationary state, stochastic matrix or mean first-passage times of a random walk. Particular attention is paid to the maximal-entropy random walk, which serves as a very distinct alternative to the ordinary random walk used in network analysis. The various importance measures, defined both with the use of ordinary random walk and the maximal-entropy random walk, are compared numerically on a set of benchmark graphs. It is shown that groups of centrality measures defined with the two random walks cluster into two separate families. In particular, the group of centralities for the maximal-entropy random walk, connected to the eigenvector centrality and path enumeration, is strongly distinct from all the other measures and produces largely equivalent results.Comment: 7 pages, 2 figure

    Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Full text link
    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point charges on the interface, and 3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function (ICDF) and potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes have significant impacts on the zeta potential, and thus the structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change

    Dismantling the Master\u27s House: Epistemological Tensions and Revelatory Interventions for Reimagining a Transformational Family Science

    Get PDF
    Using Audre Lorde\u27s The Master\u27s Tools as an epistemic guide, we propose two practice interventions for family science (FS) transformative praxes. The first, inspired by the thought of philosopher Charles Mills, challenges FS practitioners (research, practice, and policy) to explore differences in peripheral and positivist & postā€positivist (P&PP) ideologies responsible for differences in beliefs regarding the salience or nonā€salience of power differentials within FS. The second, inspired by the thought of philosopher Rudolph Carnap, encourages FS practitioners to consider differences in peripheral and P&PP practitioners\u27 understandings of what FS is at its core, and the beliefs and actions guided by their divergent core understandings. Both revelatory practices are intended to transform FS in such a way that its praxes are informed by these ways of practicing, and so that embodied understandings of the importance of pursuing antiā€racist and social justice objectives within FS become manifest

    Transformational Family Science: Praxis, Possibility, and Promise

    Get PDF
    We advance a transformational family science as an engaged practice that may serve social justice and an antiā€racist project. Our companion paper proposed epistemic revelatory interventions through which family science may reā€imagine itself. We highlight pillars of a transformational family science that (a) build with epistemological and paradigmatic stances of peripherals; (b) infuse an ethic of reflexivity, accountability, and responsibility in the pursuit of knowledge claims, and their validation; and (c) engage a critical interrogation of difference and power relations and the disruption of systemic and structural inequalities in which they are aligned. Informed by epistemic praxes, transformational praxes include inquiry, knowledge production, theorizing about structured inequalities, power differentials, and differences bound to social categories and social identities, as well as pedagogy and professional training. Transformative applications that are compensatory, reformative, restorative, reparative, and transformative may be used in multiple ways to advance social justice, antiā€racism, and social transformations

    Effective zero-thickness model for a conductive membrane driven by an electric field

    Full text link
    The behavior of a conductive membrane in a static (DC) electric field is investigated theoretically. An effective zero-thickness model is constructed based on a Robin-type boundary condition for the electric potential at the membrane, originally developed for electrochemical systems. Within such a framework, corrections to the elastic moduli of the membrane are obtained, which arise from charge accumulation in the Debye layers due to capacitive effects and electric currents through the membrane and can lead to an undulation instability of the membrane. The fluid flow surrounding the membrane is also calculated, which clarifies issues regarding these flows sharing many similarities with flows produced by induced charge electro-osmosis (ICEO). Non-equilibrium steady states of the membrane and of the fluid can be effectively described by this method. It is both simpler, due to the zero thickness approximation which is widely used in the literature on fluid membranes, and more general than previous approaches. The predictions of this model are compared to recent experiments on supported membranes in an electric field.Comment: 14 pages, 5 figure

    Ground operation of robotics on Space Station Freedom

    Get PDF
    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits

    A note on multi-dimensional Camassa-Holm type systems on the torus

    Full text link
    We present a 2n2n-component nonlinear evolutionary PDE which includes the nn-dimensional versions of the Camassa-Holm and the Hunter-Saxton systems as well as their partially averaged variations. Our goal is to apply Arnold's [V.I. Arnold, Sur la g\'eom\'etrie diff\'erentielle des groupes de Lie de dimension infinie et ses applications \`a l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1966) 319-361], [D.G. Ebin and J.E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92(2) (1970) 102-163] geometric formalism to this general equation in order to obtain results on well-posedness, conservation laws or stability of its solutions. Following the line of arguments of the paper [M. Kohlmann, The two-dimensional periodic bb-equation on the diffeomorphism group of the torus. J. Phys. A.: Math. Theor. 44 (2011) 465205 (17 pp.)] we present geometric aspects of a two-dimensional periodic Ī¼\mu-bb-equation on the diffeomorphism group of the torus in this context.Comment: 14 page
    • ā€¦
    corecore