864 research outputs found

    Crosstalk between Iron Metabolism and Erythropoiesis

    Get PDF
    Iron metabolism and erythropoiesis are inextricably linked. The majority of iron extracted from circulation daily is used for hemoglobin synthesis. In the last 15 years, major advances have been made in understanding the pathways regulating iron metabolism. Hepcidin is a key regulator of iron absorption and recycling and is itself regulated by erythropoiesis. While several viable candidates have been proposed, elucidating the “erythroid regulator” of hepcidin continues to generate significant experimental activity in the field. Although the mechanism responsible for sensing iron demand for erythropoiesis is still incompletely understood, evaluating diseases in which disordered erythropoiesis and/or iron metabolism are showcased has resulted in a more robust appreciation of potential candidates coordinated erythroid iron demand with regulators of iron supply. We present data drawn from four different conditions—iron deficiency, congenital hypotransferrinemia, beta-thalassemia, and hereditary hemochromatosis—both in human and non-human models of disease, together suggesting that erythroid iron demand exerts a stronger influence on circulating iron supply than systemic iron stores. Greater understanding of the interplay between the key factors involved in the regulation of iron metabolism and erythropoiesis will help develop more effective therapies for disorders of iron overload, iron deficiency, and hemoglobin synthesis

    Toward an intensive understanding of sewer sediment prokaryotic community assembly and function

    Get PDF
    Prokaryotic communities play important roles in sewer sediment ecosystems, but the community composition, functional potential, and assembly mechanisms of sewer sediment prokaryotic communities are still poorly understood. Here, we studied the sediment prokaryotic communities in different urban functional areas (multifunctional, commercial, and residential areas) through 16S rRNA gene amplicon sequencing. Our results suggested that the compositions of prokaryotic communities varied significantly among functional areas. Desulfomicrobium, Desulfovibrio, and Desulfobacter involved in the sulfur cycle and some hydrolytic fermentation bacteria were enriched in multifunctional area, while Methanospirillum and Methanoregulaceae, which were related to methane metabolism were significantly discriminant taxa in the commercial area. Physicochemical properties were closely related to overall community changes (p < 0.001), especially the nutrient levels of sediments (i.e., total nitrogen and total phosphorus) and sediment pH. Network analysis revealed that the prokaryotic community network of the residential area sediment was more complex than the other functional areas, suggesting higher stability of the prokaryotic community in the residential area. Stochastic processes dominated the construction of the prokaryotic community. These results expand our understanding of the characteristics of prokaryotic communities in sewer sediment, providing a new perspective for studying sewer sediment prokaryotic community structure

    Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice

    Get PDF
    Iron availability for erythropoiesis and its dysregulation in β-thalassemia are incompletely understood. We previously demonstrated that exogenous apotransferrin leads to more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing hepcidin in β-thalassemic mice. Transferrin-bound iron binding to transferrin receptor 1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that apotransferrin's effect is mediated via decreased TfR1 expression and evaluate TfR1 expression in β-thalassemic mice in vivo and in vitro with and without added apotransferrin. Our findings demonstrate that β-thalassemic erythroid precursors overexpress TfR1, an effect that can be reversed by the administration of exogenous apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1 expression independent of erythropoietin- and iron-related signaling, decreases TfR1 partitioning to reticulocytes during enucleation, and enhances enucleation of defective β-thalassemic erythroid precursors. These findings strongly suggest that overexpressed TfR1 may play a regulatory role contributing to iron overload and anemia in β-thalassemic mice. To evaluate further, we crossed TfR1+/- mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin, with β-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis, hepcidin derepression, and increased erythroid enucleation in relation to β-thalassemic mice. Our data demonstrate for the first time that TfR1+/- haploinsufficiency reverses iron overload specifically in β-thalassemic erythroid precursors. Taken together, decreasing TfR1 expression during β-thalassemic erythropoiesis, either directly via induced haploinsufficiency or via exogenous apotransferrin, decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-restricted erythropoiesis and preventing systemic iron overload in β-thalassemic mice

    Observation of Ds+pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×103(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+ee^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×104(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη\phi\eta' mass spectrum in the 2.02.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η\eta' meson (γπ+π\gamma\pi^+\pi^- and ηπ+π\eta\pi^+\pi^-), a simultaneous fit to the ϕη\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.8±1.2±1.7)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.6±1.4±2.0)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Evidence of a resonant structure in the e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} cross section between 4.05 and 4.60 GeV

    Get PDF
    The cross section of the process e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} for center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40~GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm 6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220)Y(4220) state and the theoretical prediction of a DDˉ1(2420)D\bar{D}_1(2420) molecule. This result is the first observation of Y(4220)Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260)Y(4260), Y(4320)Y(4320), Y(4360)Y(4360), ψ(4415)\psi(4415), or a new resonance, do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415)\psi(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement

    First observations of hch_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)π0hc\psi(3686) \to \pi^0 h_c. Three of them, hcppˉπ+πh_c \to p \bar{p} \pi^+ \pi^-, π+ππ0\pi^+ \pi^- \pi^0, and 2(π+π)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×103(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×103(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×103(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc3(π+π)π0)<8.7×103B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hcK+Kπ+π)<5.8×104B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Measurements of Weak Decay Asymmetries of Λc+pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+

    Get PDF
    Using e+eΛc+Λˉce^+e^-\to\Lambda_c^+\bar\Lambda_c^- production from a 567 pb1^{-1} data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λc+pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda \pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+. For the first time, the Λc+\Lambda_c^+ transverse polarization is studied in unpolarized e+ee^+e^- collisions, where a non-zero effect is observed with a statistical significance of 2.1σ\sigma. The decay asymmetry parameters of the Λc+\Lambda_c^+ weak hadronic decays into pKS0pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0 and Σ0π+\Sigma^0\pi^+ are measured to be 0.18±0.43(stat)±0.14(syst)0.18\pm0.43(\rm{stat})\pm0.14(\rm{syst}), 0.80±0.11(stat)±0.02(syst)-0.80\pm0.11(\rm{stat})\pm0.02(\rm{syst}), 0.57±0.10(stat)±0.07(syst)-0.57\pm0.10(\rm{stat})\pm0.07(\rm{syst}), and 0.73±0.17(stat)±0.07(syst)-0.73\pm0.17(\rm{stat})\pm0.07(\rm{syst}), respectively. In comparison with previous results, the measurements for the Λπ+\Lambda\pi^+ and Σ+π0\Sigma^+\pi^0 modes are consistent but with improved precision, while the parameters for the pKS0pK_S^0 and Σ0π+\Sigma^0\pi^+ modes are measured for the first time
    corecore