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RED CELLS, IRON, AND ERYTHROPOIESIS
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Key Points

• Apotransferrin decreases
TfR1 expression and alters
TfR1 trafficking to normalize
enucleation in b-thalassemic
erythroid precursors.

• Decreased TfR1 upregulates
hepcidin in an iron- and
ERFE-independent manner,
resulting in iron-restricted
b-thalassemic erythropoiesis.

Iron availability for erythropoiesis and its dysregulation in b-thalassemia are incom-

pletely understood. We previously demonstrated that exogenous apotransferrin leads to

more effective erythropoiesis, decreasing erythroferrone (ERFE) and derepressing

hepcidin in b-thalassemic mice. Transferrin-bound iron binding to transferrin receptor

1 (TfR1) is essential for cellular iron delivery during erythropoiesis. We hypothesize that

apotransferrin’s effect is mediated via decreased TfR1 expression and evaluate TfR1

expression in b-thalassemic mice in vivo and in vitro with and without added

apotransferrin. Our findings demonstrate that b-thalassemic erythroid precursors

overexpress TfR1, an effect that can be reversed by the administration of exogenous

apotransferrin. In vitro experiments demonstrate that apotransferrin inhibits TfR1

expression independent of erythropoietin- and iron-related signaling, decreases TfR1

partitioning to reticulocytes during enucleation, and enhances enucleation of defective

b-thalassemic erythroidprecursors. These findingsstrongly suggest that overexpressed

TfR1mayplay a regulatory role contributing to ironoverloadandanemia inb-thalassemic

mice. To evaluate further, we crossed TfR11/2 mice, themselves exhibiting iron-restricted erythropoiesis with increased hepcidin,

with b-thalassemic mice. Resultant double-heterozygote mice demonstrate long-term improvement in ineffective erythropoiesis,

hepcidin derepression, and increased erythroid enucleation in relation tob-thalassemicmice. Our data demonstrate for the first time

thatTfR11/2haploinsufficiency reverses ironoverloadspecifically inb-thalassemicerythroidprecursors. Taken together,decreasing

TfR1expressionduringb-thalassemic erythropoiesis, either directly via inducedhaploinsufficiencyor via exogenousapotransferrin,

decreases ineffective erythropoiesis and provides an endogenous mechanism to upregulate hepcidin, leading to sustained iron-

restricted erythropoiesis and preventing systemic iron overload in b-thalassemic mice. (Blood. 2017;129(11):1514-1526)

Introduction

b-Thalassemias result from mutations in the b-globin gene, reducing
b-globin synthesis1 and consequently accumulating excess a-globin
chains.This pathology leads to increased erythroidprecursor apoptosis,
causing ineffective erythropoiesis, extramedullary expansion, and
splenomegaly, which together with shortened red blood cell (RBC)
survival result in anemia.2,3 Normal erythropoiesis leads to the
generation of RBCs from multipotent stem cells and involves (1)
erythropoietin-sensitive proliferation, (2) differentiation from pro- to
orthochromatophilic erythroblasts during iron-dependent hemoglobin
synthesis, and (3) enucleation with release and maturation of reticulo-
cytes into RBCs. Although the mechanisms involved in enucleation
remain elusive, there is general consensus that it is the end result
of erythropoiesis, and abnormalities in erythroid differentiation

(eg, ineffective erythropoiesis) are expected to decrease the number
of end-terminal erythroblasts available to undergo enucleation.

In addition to ineffective erythropoiesis, patients with moderate or
severe b-thalassemia have inappropriately low circulating hepcidin,4,5

the main negative regulator of body iron flows,6-8 leading to increased
intestinal iron absorption9 and iron overload. Mouse models of
b-thalassemia also exhibit relatively low hepcidin.10 Lack of appropri-
ately increased hepcidin despite increased parenchymal iron stores
suggests that a competing signal is counterregulating hepcidin
expression,11-13 establishing b-thalassemia as an important opportu-
nity for evaluating erythroid regulation of hepcidin.14 Several factors
(eg, growth differentiation factor-15 [GDF-15]) secreted by erythroid
precursors13,15-18 have been implicated as pathological hepcidin
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regulators in b-thalassemia19,20 but are likely not physiological
hepcidin regulators in light of their expression remaining unchanged
after phlebotomy inmice,21 in irondeficiency,22,23 in anemiaof chronic
inflammation,23 and in myeloproliferative diseases.24 Recently,
erythroferrone was identified as a physiologic erythroid regulator of
hepcidin, found to be increased in bone marrow from b-thalassemic
and phlebotomized wild-type (WT) mice.25 Erythroferrone ablation in
b-thalassemic mice normalized inappropriately suppressed hepcidin
expression.25 Despite high confidence that erythroferrone regulates
hepcidin, phlebotomized erythroferrone knockout mice exhibit de-
creased hepcidin expression25; furthermore, despite increased hepcidin
expression, anemia persists in erythroferrone knockout b-thalassemic
mice.26 We aim to evaluate in greater detail the molecules involved in
iron delivery for erythropoiesis and assess additional mechanisms of
hepcidin regulation in b-thalassemic mice.

Erythroid precursors obtain iron via the transferrin cycle. Diferric
transferrin binds to transferrin receptor 1 (TfR1),27-29 ultimately
recycling apotransferrin (apoTf, transferrin devoid of iron) and TfR1
back to the plasma membrane after iron transport to the cytosol/
mitochondria. TfR1 is characteristically expressed on erythroid
precursors, progressively decreasing during erythroid differentiation.30

TfR1 is lost during both enucleation and reticulocyte maturation, the
latter a consequence of proteolytic cleavage just external to the
transmembrane domain,31 leading to soluble TfR1 (sTfR1) circulation
inplasma.32TfR1expression itself isupregulated in irondeficiency33,34

and by increased erythropoiesis,35 but its function in erythropoiesis
beyond its canonical involvement in cellular iron uptake is in-
completely understood. Prior investigation found no regulatory
function of sTfR1 on hepcidin36; however, hepcidin expression in
TfR1 heterozygous mice (TfR11/2) is increased despite relative iron
deficiency, iron-restricted erythropoiesis, and increased erythroferrone
expression.37 In light of this paradoxical regulation of hepcidin, we aim
to evaluate the effect of decreased TfR1 in regulating ineffective
erythropoiesis and iron overload in b-thalassemic mice.

Recent studies investigate mechanisms by which modulating
systemic iron influences erythropoiesis. Iron-deficient diet is only
partially beneficial in diseases of ineffective erythropoiesis,38 de-
creasing liver iron without improving hemoglobin in b-thalassemic
mice.38 Furthermore, iron chelator deferiprone-treated b-thalassemic
mice exhibit decreased liver iron with no improvement in erythropoi-
esis.39 By contrast, increased hepcidin expression ameliorates in-
effective erythropoiesis in b-thalassemic mice,38-40 while reversing
iron overload; however, transmembrane protease, serine 6 (Tmprss62/2)
mice exhibit very low mean corpuscular volume (MCV), leading to
extreme iron-restricted erythropoiesis, and Tmprss62/2 b-thalassemic
mice exhibit increased erythropoietin,41 suggesting that excessive
hepcidin upregulation causes iron restriction38 and prevents complete
reversal of ineffective erythropoiesis. Thus, inducing iron-restricted
erythropoiesis by decreasing TfR1 may provide endogenous

mechanisms for increasing hepcidin to maximize benefit for
erythropoiesis and iron overload in b-thalassemia.

We previously demonstrated that exogenous apoTf ameliorates
ineffective erythropoiesis, reverses anemia, and increases hepcidin
expression in Hbbth1/th1 (th1/th1) mice,42 a model of b-thalassemia
intermedia. Furthermore, apoTf-treated th1/th1mice exhibit more iron-
restricted erythropoiesis, decreased transferrin saturation,42 and less
liver irondeposition.43Similarfindingswereevident inHbbth3/1 (th3/1)
mice.44,45 b-Thalassemic humans15 and mice46 exhibit increased
sTfR1 concentration; sTfR1 decreased after apoTf treatment in
th1/th1 mice,46 suggesting the possibility that changes in membrane
TfR1, proportional to sTfR1,maybe either a cause or a consequence of
improved erythropoiesis inb-thalassemia. In this report,we confirm the
suppressive effect of apoTfon erythroblast TfR1 expression invivo and
in vitro, independent of erythropoietin- and iron-related signaling.
Furthermore, we generate double-heterozygote (TfR11/2 crossed with
th3/1) mice and demonstrate iron restriction specifically in erythroid
precursors, improved erythroid enucleation, and hepcidin derepression
in an iron- and erythroferrone-independent manner. These double-
heterozygote mice provide compelling evidence that decreased TfR1
expression is central to mitigating defective erythroid enucleation in
th3/1mice.We also demonstrate that hepcidin derepression results in
redistribution of iron to macrophages, where iron is less toxic,47

resulting in relatively iron-restricted erythropoiesis and preventing
progressive systemic iron overload. Taken together, our data strongly
support our hypothesis that decreased TfR1 reverses ineffective
erythropoiesis in b-thalassemic mice.

Methods

Mice

C57BL6 (WT) and b-thalassemic (th3/1) 44 mice were originally purchased
from Jackson Laboratories. TfR11/2mice48 were gifted byNancyAndrews. All
mice were backcrossed onto a C57BL6 background for more than 11 generations.
All experiments were conducted using 5-month-old gender-matched mice unless
otherwise noted. Progeny of TfR11/2 crossed with th3/1mice were generated to
analyze characteristics of “double-heterozygote mice.” All mice were bred and
housed in the animal facility under Association for Assessment and Accreditation
of Laboratory Animal Care guidelines. Experimental protocols were approved by
the Institutional Animal Care and Use Committee. Mice were treated with
10 mg (400 mg/kg/d) of human apoTf (Kamada, Israel) intraperitoneally daily for
20 days and sacrificed on day 3 after the last injection.43 Samples were stored
at280°C until further analysis.

Bone marrow samples and isolated bone marrow erythroid precursors were
used to analyze the effect of TfR1 haploinsufficiency on erythroblasts. Bone
marrow erythroid precursors were collected using CD45 beads (ie, CD45-
negative cells). Furthermore, embryonic erythrocytes in circulation and fetal liver
cells (FLCs) from embryonic day 18.5 (E18.5)were used as supporting evidence

Table 1. RBC parameters in double-heterozygote mice reveal a significant increase in RBC number and hemoglobin with a decrease in
reticulocyte count, MCV, MCH, and RDW in comparison with th3/1 mice

Hemoglobin (g/dL) RBCs (106 cells/mL) Reticulocytes (109 cells/L) RDW (%) MCV (fL) MCH (pg)

WT 15 6 0.7 11 6 0.4 313 6 20 13 6 0.3 43 6 1.1 14 6 0.2

TfR11/2 14 6 0.3* 13 6 0.3** 371 6 33* 16 6 0.5*** 36 6 1.1*** 11 6 0.2***

th3/1 9 6 0.2*** 10 6 0.1* 1958 6 128*** 36 6 0.4*** 32 6 1.2*** 9 6 0.1***

Double-het 11 6 0.2††† 13 6 0.3††† 945 6 39††† 24 6 0.4††† 29 6 0.5† 8 6 0.1††

Data represent means 6 standard errors of the mean; n 5 8 mice per group.

Double-het, double-heterozygote mice.

*P , .05; **P , .01; ***P , .001 vs WT.

†P , .05; ††P , .01; †††P , .001 vs th3/1.

BLOOD, 16 MARCH 2017 x VOLUME 129, NUMBER 11 ROLE OF TfR1 IN b-THALASSEMIC ERYTHROPOIESIS 1515

For personal use only.on May 19, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


A

20um

double-hetth3/+WT TfR1+/-

B

α-globin

STD
W

T

TfR
1+

/-
th

3/
+ double-het

β-globin

C

double-het
th3/+

WT
TfR1+/-

0

20

40

60

80

100

0 15 28 42 56

RB
C 

su
rv

iv
al

 (%
)

**

**

††

††

††

††
**

*

Time (d)
double

het
th3/+WT TfR1+/-

0.000

0.004

0.008

0.012

0.016

Sp
le

en
/b

od
y 

w
ei

gh
t

(m
g/

g)

** ††

*

E

double-het

th3/+

WT

TfR1+/-

D F

Spleen

Liver

200um

100um

double-hetth3/+WT TfR1+/-

H

double
het

th3/+WT TfR1+/-
0

500

1000

1500

2000
** ††

Se
ru

m
 e

ry
th

ro
po

ie
tin

(m
g/

m
L)

NS
G

CD
44

FSC

WT

14%

69%

105

104

103

102

50 100 150 200 250

(x 1,000)

TfR1+/-

*22%

64%

105

104

103

102

50 100 150 200 250

(x 1,000)

th3/+

**

**

105

104

103

102

50 100 150 200 250

(x 1,000)

double-het

††

††

105

104

103

102

50 100 150 200 250

(x 1,000)

39%

42%

30%

55%

Figure 1.

1516 LI et al BLOOD, 16 MARCH 2017 x VOLUME 129, NUMBER 11

For personal use only.on May 19, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


of differences in enucleation among WT, th3/1, and double-heterozygote mice
in vivo.

Cell culture

FLCs from E12.5 to E14.5 embryos, when the predominant cell type in the liver
was erythroid, were isolated using anti-Ter119 beads49; these experiments
provide additional in vitro support to our in vivo experiments. Hepatocytes were
isolated fromWTmice using two-step liver perfusion50 and processed after 24-
hour incubation at 37°C in 10% mouse sera.43

Peripheral blood analyses

RBC indices and serumsampleswere analyzed as previously described.42 Serum
mouse erythropoietin (Quantikine, R&D Systems), transferrin (Abcam), and
hepcidin (Hepcidin-Murine CompeteTM, Intrinsic LifeSciences, LLC, La Jolla,
CA)weremeasuredbyenzyme-linked immunosorbent assay (ELISA)according
to the manufacturer’s instructions. The sandwich ELISA using mouse mono-
clonal antibodies against mouse erythroferrone was performed as previously
described26; 100 pg/mL was the assay’s lower limit of detection. Integra 800
AutomatedClinicalAnalyzer (RocheDiagnostics, Indianapolis, IN)wasused for
other circulating iron-related parameters; serum transferrin saturation was
measured as a ratio of serum iron to transferrin iron-binding capacity. Images
were acquired on the Gel Logic 200 Imaging System with Kodak Molecular
Imaging software (version 4.0.4).

Histology and immunohistochemistry

Immunohistochemical staining was performed using anti-TER119 antibodies
(eBioscience, San Diego, CA). Images were acquired on a Zeiss Axioskop2
microscope with an AxioCamHRC camera using Plan-Neofluar objec-
tives 320/0.5 and Axiovision software.

Nonheme iron spectrophotometry

Quantification was performed via the Torrance and Bothwell method.51 The
absorption was measured at 540 nm by spectrophotometer (Multiskan MCC
Microplate Reader, Fisher Scientific).

Flow cytometry

Bone marrow and spleen cells were processed as previously described46,52 with
minormodifications. FLCs and peripheral blood circulating cells were incubated
with SYTO 60 and TER-119 to evaluate enucleation. Nucleated and enucleated
cells were identified using SYTO 60 and forward scatter.53,54 Results were
acquired and cells collected on a MoFlo� XDP High-Speed Cell Sorter using
Summit Software (Beckman Coulter).

Western blot analysis

Western blot was performed using phosphor extracellular signal-regulated kinase
(pErk), Erk, pSmad1/5/8, Smad1, bone morphogenetic protein 2 (BMP2; Novus
Biologicals), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Invitrogen),
TfR1 and b-actin (Invitrogen), and TfR2 (gift from Robert Fleming) primary
antibodies followedby secondary antibodies (horseradishperoxidase-consjugated;
Thermo Scientific). Immunoreactive bands were visualized by enhanced
chemiluminescence (Amersham Bioscience, GE Healthcare Life Sciences).

Quantitative real-time PCR

RNA was purified from erythroid precursors and hepatocytes using PureLink
RNA Mini Kit (Ambion, Life Technology) and analyzed with SuperScript III
Platinum SYBRGreen One-Step quantitative real-time (qRT) polymerase chain
reaction (PCR) Kit (Invitrogen). BMP2, Bmp6, TfR1, TfR2, Hfe, hepcidin, and
erythroferrone messenger RNA (mRNA) levels were detected.25,55,56 Primers
for BMP2, Bmp6, TfR1, TfR2, Hfe, hepcidin, and erythroferrone were designed
and confirmed.25,43 Target gene mRNA concentration was normalized to
GAPDH.13,57

Statistics

Data are presented as mean 6 standard error of the mean. When multiple
comparisons were needed, statistical analysis was performed using one-way
analysis of variance with Tukey and Welch’s tests, depending on whether the
number of animals was comparable between groups. For comparisons between
two groups, we used two-tailed Student paired t test.

Results

Double-heterozygote mice exhibit improved anemia and

ineffective erythropoiesis

Double-heterozygote (TfR11/2 crossed with th3/1) mice exhibit
increased circulating hemoglobin and RBC count and decreased
reticulocyte count and red cell distribution width (RDW) in relation
to th3/1 mice (Table 1). In addition, MCV and mean corpuscular
hemoglobin (MCH) in double-heterozygote mice are further
decreased, indicating relatively iron-restricted erythropoiesis
(Table 1). Double-heterozygote mice also reveal improved RBC
morphology (Figure 1A), decreaseda-globin precipitation onRBC
membranes (Figure 1B), and normalized circulating RBC survival
in comparison with th3/1 mice (Figure 1C). Spleen size is
significantly reduced (Figure 1D-E) with largely normalized
splenic architecture (Figure 1F), decreased proportion of erythroid
precursors in the spleen (supplemental Figure 1A, available on the
Blood Web site), reversal of extramedullary erythropoiesis in the
liver (Figure 1F), and no change in splenic nonheme iron
concentration (supplemental Figure 1B). Furthermore, in compar-
ison with th3/1, the proportion of bone marrow erythroid
precursors is reduced (Figure 1G). No differences in bone marrow
erythroid precursor apoptosis or reactive oxygen species are
observed between double-heterozygote and th3/1 mice (supple-
mental Figure 1C-D). Lastly, double-heterozygote mice exhibit
decreased serum erythropoietin concentration in relation to th3/1
mice (Figure 1H), although erythropoietin concentration remains
somewhat higher than in WT mice (P 5 .06). These findings
demonstrate improved ineffective erythropoiesis in double-
heterozygote mice, with a significantly increased proportion of
enucleated erythroblasts (Figure 1G).

Figure 1. Improved ineffective erythropoiesis in double-heterozygote mice. (A) Morphology of RBCs in peripheral blood smears (n5 5 mice per group). (B) Deposition of

a-globin on RBC membranes as assessed by analyzing proteins derived from RBC membranes using nondenaturing gel analysis. Data are representative of an experiment

independently repeated five times. Standard “localization control,” RBC cytoplasmic lysate was run on the gel to identify where a- and b-globin migrate. (C) RBC survival in

circulation from WT, TfR11/2, th3/1, and double-heterozygote mice as measured by the decaying percentage of biotinylated RBCs over time (n 5 4 mice per group). (D)

Double-heterozygote mice exhibit smaller spleen size in comparison with th3/1 mice. (E) Statistical analysis of spleen/body weight (n 5 5-6 mice per group). (F) Ter119

immunohistochemistry staining reveals more normal splenic architecture with more surface area devoted to white pulp (Ter119 negative cells) in TfR11/2 mice in relation to

WT mice and in double-heterozygote mice in relation to th3/1 mice. In addition, Ter119 immunohistochemistry staining of liver sections reveals reversal of extramedullary

erythropoiesis (circles) in double-heterozygote mice in relation to th3/1 mice (n 5 4-6 mice per group). (G) Flow cytometry analysis of percentages of bone marrow erythroid

precursors (red) and enucleated cells (black) from WT, TfR11/2, th3/1, and double-heterozygote mice as identified by CD44 and forward scatter46,52 (n 5 4-5 mice per

group). (H) Serum erythropoietin concentration in WT, TfR11/2, th3/1, and double-heterozygote mice (n 5 4-5 mice per group). *P , .05 vs WT mice; **P , .01 vs WT mice;

††P , .01 vs th3/1 mice. Double-het 5 double-heterozygote mice; FSC, forward scatter; NS, not significant; STD, standard.
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Increased enucleation in double-heterozygote mice

Erythroid precursor enucleation results in the formation of reticulocytes
and extruded nuclei surrounded by a rim ofmembrane (ie, pyrenocyte).
To explore the possibility that TfR1 haploinsufficiency influences
enucleation,we evaluatedE14.5 embryos at the start of enucleation and
demonstrated that th3/1 embryos display fewer enucleated cells in
peripheral circulation in relation to WT, partially restored in double-
heterozygote embryos (Figure 2A). We also analyze enucleation
in vivo in th3/1 E18.5 FLCs.58 Enucleation is decreased in th3/1
in relation to WT and normalized in double-heterozygote FLCs
(Figure 2B). Furthermore, enucleation of E12.5 to 14.5 th3/1 FLCs
(when the majority of FLCs remain nucleated) after 24 hours in vitro49

is significantly decreased (Figure 2C) and partially restored in double-
heterozygote FLCs (Figure 2C), suggesting that decreased TfR1
expression restores delayed erythroid enucleation. Our data support the
hypothesis that, in light of in vivo and in vitro effects, improved
enucleation is evidence of improved ineffective erythropoiesis in
b-thalassemic mice as a consequence of TfR1 haploinsufficiency.

Systemic iron restriction, increased hepcidin, and decreased

erythroferrone in double-heterozygote mice

Because erythropoiesis results in hepcidin suppression and increased
hepcidin decreases circulating iron concentration, we hypothesized
that improved erythropoiesis in double-heterozygote mice results in

hepcidin derepression and consequently relative systemic iron re-
striction. Consistent with this expectation, double-heterozygote mice
exhibit decreased serum iron (Figure 3A), transferrin iron-binding
capacity (supplemental Figure 2A), and transferrin concentration
(supplemental Figure 2B) in relation to th3/1mice aswell as transferrin
saturation (supplemental Figure 2C) in relation toWTmice. Transferrin
saturation is a calculated value; if both serum iron and transferrin iron-
binding capacity are decreased, as they are in double-heterozygotemice
in relation to th3/1mice, then transferrin saturation remains unchanged.
Furthermore, stainable iron in liver sections (Figure 3B) and nonheme
liver iron concentration (Figure 3C) decrease in double-heterozygote
mice in relation to th3/1 mice, consistent with the reversal of iron
overload over time. Despite this, serum hepcidin is increased in double-
heterozygote mice in relation to WT mice (Figure 3D).

Prior studies demonstrate that hepcidin expression increases
as body iron stores increase in th3/1 mice.5,26 We thus evaluated 1-,
5-, and 15-month-old mice. First, we demonstrate statistically increased
hepcidin concentration in double-heterozygote mice in relation to th3/1
mice at 1 month of age (Figure 3D). Increased liver iron accumulates in
th3/1mice as they age (Figure 3C), resulting in insufficiently increased
hepcidin and insensitivity to iron as measured by hepcidin/liver iron
concentration in 15-month-old th3/1mice (Figure 3E). Second, serum
hepcidin concentration increases progressively in double-heterozygote
mice with statistically significant differences in relation to WT mice
(Figure3D);nodifferenceexistsbetweenWTand th3/1miceat1, 5, and
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Figure 2. Increased enucleation in vivo and in vitro in

double-heterozygote fetal liver cells. (A) Peripheral

smears with nucleated and enucleated (arrow) erythrocytes

from WT, th3/1, and double-heterozygote E14.5 embryos.

(B) Flow cytometry analysis of nucleated and enucleated

(circles; SYTO 360 low cells53,54) E18.5 fetal liver cells in

vivo. (C) Flow cytometry analysis of nucleated and enucle-

ated (circles; SYTO 360 low cells53,54) E12.5 to E14.5 WT,

th3/1, and double-heterozygote fetal liver cells in vitro (n 5 3–5

mice per group). *P , .05 vs WT mice; †P , .05 vs th3/1mice;

††P , .01 vs th3/1 mice.
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15months. Consequently, unlike those in th3/1mice, iron stores do not
increase indouble-heterozygotemiceas theyage (Figure3C), suggesting
both that increased hepcidin prevents progressive iron accumulation and
that hepcidin regulation is independent of systemic iron in double-
heterozygote mice. Lastly, the effect of TfR1 haploinsufficiency on
hematologic parameters is sustained in 15-month-old th3/1 mice
(Table 2), further suggesting that progressive increase in serumhepcidin
concentration is independent of systemic iron (Figure 3E).

To further evaluate whether increased hepcidin is a consequence of
a circulating factor,we treatedWThepatocytes in vitrowith serum from
WT, th3/1, and double-heterozygote mice. Hepcidin mRNA expres-
sion was significantly increased in response to serum from double-
heterozygote mice in relation to th3/1 mice (Figure 3F). Because
erythroferrone suppresses hepcidin in th3/1mice,25 we postulate that
increased hepcidin resulted from decreased erythroferrone in double-
heterozygote mice. Our data demonstrate that erythroferrone mRNA
expression and serum concentration are increased in th3/1 mice in
comparison with WT mice, but significantly reduced (Figure 4A) and
undetectable (Figure 4B) in double-heterozygote mice. Because
erythroferrone functions as a hormone,25 we emphasize the importance
of serum erythroferrone concentration rather than its mRNA expres-
sion. Furthermore, when analyzed concurrently with serum hepcidin
concentration, increased hepcidin in TfR11/2 mice in relation to WT
mice does not reflect changes in erythroferrone, and decreased
erythroferrone in double-heterozygote mice in relation to th3/1 mice
does not result in significantly increased hepcidin concentration
(Figure 4C). Lastly, no difference in GDF-15 mRNA expression is
observed in double-heterozygote erythroblasts in relation to th3/1
erythroblasts (supplemental Figure 3).

Furthermore, because serum iron isdecreased indouble-heterozygote
mice in relation to WT mice (Figure 3A) with significantly decreased
spleen size, serumerythropoietin, and erythroferrone expression (Figures
1D-E,H, 4A-B), we anticipated that the dominant iron signal would
decrease hepcidin expression in double-heterozygote mice.We thus pro-
pose that counterintuitively increased hepcidin in double-heterozygote
mice in comparison with th3/1mice (Figure 3D-E) is a consequence
of TfR1 haploinsufficiency or other yet unknown (nonerythroferrone
related) erythroid regulators of hepcidin.

No change in hepatocyte TfR2 and Hfe expression or BMP/Smad

and Mek/Erk signaling in double-heterozygote mice

Becauseour analysis of double-heterozygotemice indicates a potential
novel mechanism of hepcidin regulation by the erythron and erythroid
regulation of hepcidin is incompletely understood, we interrogate
known iron-related signaling pathways, through cell surface TfR2,
Hfe, and BMP receptor via BMP/Smad or Mek/Erk signaling
pathways, in hepatocytes.59-62 TfR2 and Hfe increase hepcidin ex-
pression in response to systemic iron59,60 through parallel pathways
involving Mek/Erk1/2 and Smad1/5/8.63 Hfe and TfR2 mRNA
expression (supplemental Figure 4A) and TfR2 protein concentration
(supplemental Figure 4B-C) are no different in isolate hepatocytes
from WT, TfR11/2, th3/1, and double-heterozygote mice. Further-
more, signaling through Mek/Erk (supplemental Figure 4B,D) and
Smad pathways (supplemental Figure 4E-F) are unchanged in double-
heterozygote hepatocytes in comparison with th3/1 hepatocytes.
Lastly, no changes in BMP2 mRNA expression (supplemental
Figure 5A) and protein concentration (supplemental Figure 5B-C)
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or Bmp6 expression in relation to liver iron concentration
(supplemental Figure 5D) are evident in isolate hepatocytes from
double-heterozygote mice in relation to th3/1 mice. These findings
suggest that TfR1 haploinsufficiency regulates hepcidin indepen-
dently of BMP/Smad and Mek/Erk signaling pathways and TfR2 or
Hfe expression in th3/1mice.

Double-heterozygote mice exhibit iron-restricted erythropoiesis

and shift of iron contents between bone marrow

cell populations

We have previously shown that nonheme iron is decreased in th1/th1
mice bone marrow despite systemic iron overload.64 As our current data
reveal, this is also true of th3/1 mice, and nonheme iron remains
unchanged in double-heterozygote mice in comparison with th3/1mice
(Figure 5A). We hypothesized that TfR1 haploinsufficiency results in
disproportionally decreased iron uptake by erythroid precursors. To test
this, we separated bone marrow samples into CD45-negative cells, an
erythroid-enrichedpopulation,46 andnonerythroid (CD45-positive) cells.
Our results demonstrate that TfR11/2 and th3/1 erythroid precursors
have less nonheme iron than do WT (Figure 5B-C), and double-
heterozygote erythroid precursors exhibit a further decrease in nonheme
iron in relation to th3/1 (Figure 5C). Furthermore, in comparison with
WT mice, th3/1 mice exhibit decreased bone marrow and erythroid
precursor nonheme iron (Figure 5A-C), the latter normalized in double-
heterozygote mice (Figure 5C). Lastly, we demonstrate that although
nonheme iron concentration is further decreased in double-heterozygote
erythroid precursors, it is increased in CD45-positive cells (Figure 5C).
Our data strongly suggest that TfR1 haploinsufficiency disproportion-
ally influences erythroidprecursor iron concentration, redistributing iron
from erythroid precursors to other cell types (eg, macrophages) within
the bone marrow. In light of these results, we hypothesized that
apotransferrin improves erythropoiesis in b-thalassemic mice42,43

by downregulating erythroid precursor TfR1 expression.

Apotransferrin enhances loss of reticulocyte TfR1 during

enucleation, improves enucleation, and reduces TfR1

expression in b-thalassemic erythroid precursors

independently of signaling via erythropoietin

Similar to TfR1 haploinsufficiency, exogenous apoTf reverses in-
effective erythropoiesis in b-thalassemic mice.42,43,45 In vivo, both
TfR1 mRNA and protein expression in erythroid precursors are
significantly increased in th3/1 mice in comparison with WT mice
(Figure 6A-B; supplemental Figure 6A). Furthermore, because TfR1 is
regulated by iron status via the binding of Irp2 at the 39 transcript,
leading to TfR1 mRNA stabilization and increased translation during
iron deficiency, we expected apoTf-induced iron-restricted erythropoi-
esis to further increase TfR1 expression.65 Despite this, exogenous
apoTf reduced erythroid precursor TfR1 concentration without
changing mRNA expression (Figure 6A-B; supplemental Figure 6A).
We thus postulated that decreased erythroid precursor TfR1 expression
in apoTf-treated b-thalassemic mice is a consequence of decreased
erythropoietin (Figure 1H) and Stat5 signaling, known to transcrip-
tionally regulate TfR1.35,66 To test this, we evaluate in vitro apoTf-
treated FLCs and demonstrate decreased TfR1 mRNA and protein
concentrationwithout changes in Stat5 signaling or Irp-2 concentration
(Figure 6C-D; supplemental Figure 6B-D), suggesting that apoTf has a
direct effect on decreasing TfR1 expression in erythroid precursors.

Table 2. RBC parameters in 15-month-old double-heterozygote mice reveal a significant increase in RBC number and hemoglobin with a
decrease in reticulocyte count and RDW in comparison with th3/1 mice

Hemoglobin (g/dL) RBCs (106 cells/mL) Reticulocytes (109 cells/L) RDW (%) MCV (fL) MCH (pg)

th3/1 7 6 0.3 8 6 0.2 1544 6 64 36 6 0.2 38 6 1.4 8 6 0.1

Double-het 10 6 0.3*** 12 6 0.4*** 965 6 113*** 27 6 1.9** 35 6 0.4 8 6 0.1

Data represent means 6 standard errors of the mean; n 5 3–4 mice per group.

Double-het, double-heterozygote mice.

**P , .01; ***P , .001 vs th3/1 mice.
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To explore the possibility that apoTf decreases partitioning of TfR1
to reticulocytes during enucleation, we evaluated the effect of apoTf on
E12.5 to E14.5 FLCs in vitro. Our data demonstrate that the ratio of
membrane TfR1 on extruded nuclei and reticulocytes is significantly
increased in apoTf-treated th3/1 FLCs (Figure 6E). Furthermore, our
results demonstrate increased enucleation in apoTf-treatedE12.5 th3/1
FLCs (Figure 6F). Taken together, these results provide evidence that
exogenous apoTf alters TfR1 expression, is associated with decreased
partitioning of TfR1 to reticulocytes, and correlates with improved
enucleation of th3/1 erythroid precursors.

Discussion

Because transferrin-bound iron uptake via TfR1 is the major source
of iron for erythropoiesis, we hypothesized that exogenous apoTf
operates by decreasingTfR1 in erythroid precursors to compensate for
ineffective erythropoiesis in b-thalassemic mice. We developed a
mousemodelwithTfR1haploinsufficiency inb-thalassemicmice and
demonstrate that these double-heterozygote mice alleviate anemia
by reversing ineffective erythropoiesis and promoting enucleation.
Furthermore, TfR1 haploinsufficiency derepresses hepcidin, resulting
in reversal of iron overload, redistributing iron from erythroid
precursors to bone marrow CD45-positive cells (ie, macrophages).
Lastly, we demonstrate that apoTf decreases TfR1 partitioning to

reticulocytes during enucleation, improving erythroidenucleation, and
suppresses TfR1 in b-thalassemic FLCs independently of erythropoi-
etin, Stat5 signaling, and regulation by Irp-2. Taken together, our results
suggest that decreased TfR1 expression during erythroid differentiation
is a novel potential target to ameliorate ineffective erythropoiesis,
derepress hepcidin, and reverse iron overload in b-thalassemia.

We inadvertently examined the effects of decreasing TfR1
expression in apoTf-treated b-thalassemic mice42,45 with reversal of
ineffective erythropoiesis.42 We anticipate that iron-restricted erythro-
poiesis is a central underlying mechanism for these observations.
Accordingly, we demonstrate decreased transferrin saturation, MCV,
and MCH in apoTf-treated b-thalassemic mice42,45 and decreased
cellular iron and heme concentrations in apoTf-treated mouse
erythroleukemia (MEL) cells (supplemental Figure 7). Why cellular
iron concentration is decreased in th3/1 precursors in relation to WT
erythroid precursors remains incompletely understood, but we
hypothesize that the increased number of b-thalassemic erythroid
precursors limit iron availability per cell and, in conjunction with
increased serum erythropoietin concentration, result in increased TfR1
expression in vivo. The effects of transferrin treatment and TfR1
haploinsufficiency on b-thalassemic mice thus provide evidence of an
additional mechanism for increasing hepcidin by erythroid regulation,
not a direct effect of hepcidin expression that results in iron restriction
and improves erythropoiesis as a secondary effect.38,40,41
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In addition, we surmise that due to excess TfR1 in b-thalassemic
precursors in relation to WT erythroid precursors, TfR1 haploinsuffi-
ciency induces further iron-restricted erythropoiesis in b-thalassemic

mice. We hypothesize that both exogenous apoTf and TfR1
haploinsufficiency result in decreased a-globin production and
precipitation on RBCmembranes,42 enabling heat shock protein 70
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translocation into the nucleus to prevent GATA-1 cleavage by
caspase-3,67 and restore terminal erythropoiesis in b-thalassemic
mice. Consequently, double-heterozygote mice and apoTf-treated
b-thalassemic42,43 mice exhibit decreased splenomegaly and
erythroferrone, the latter derepressing hepcidin and preventing
reversal of iron-restricted erythropoiesis by inhibiting iron absorption
and sequestering iron in macrophages (Figure 7). We postulate that
improved RBC survival in double-heterozygote mice results from
decreased splenomegaly (Figure 1D-E) as in apoTf-treated in
b-thalassemic mice.42 In b-thalassemia, the enlarged spleen is the site
for extramedullary erythropoiesis, serving as a reservoir for erythroid
precursors that cannot undergo apoptosis (due to elevated erythropoi-
etin concentration) or differentiation (due to ineffective erythropoie-
sis). Both exogenous apotransferrin and TfR1 haploinsufficiency
decrease extramedullary erythropoiesis, and thus splenomegaly,
which in turn results in decreased serumerythropoietin concentrations.
Additional experiments are required to fully elucidate this effect.

Although iron restriction by multiple means has been assessed
previously, neither iron-restricted diet nor iron chelation reverse
ineffective erythropoiesis in b-thalassemic mice despite a measurable

decrease in liver iron overload. Several interpretations are possible.
First, iron-deficient diet leads to transient iron-restricted erythropoiesis;
however, because hepcidin is suppressed,38,68 the effect on erythro-
poiesis is not as robust as other means of inducing iron-restricted
erythropoiesis. In addition, systemic iron deficiency results in TfR1
upregulation, counteracting iron-restricted erythropoiesis by increasing
iron uptake in erythroid precursors.69,70 Iron chelation, on the other
hand, causes increased hepcidin expression,39,68 changing the distri-
bution of iron bymoving it out of parenchymal cells and loading it onto
circulation transferrin.Why it has no effect on erythropoiesis is unclear,
but several possibilities exist. First, lack of effect on erythropoiesis
may be a consequence of the dose used. Also, hepcidin may be
insufficiently increased, or increased hepcidinmay take time to enable
an observable iron-restricted erythropoiesis; however, as systemic iron
overload decreases, hepcidin expression is also likely to decrease,
enhancing iron absorption and recycling. Ourmodels predict that iron-
restricted erythropoiesis as a consequence of exogenous apotransferrin
or TfR1 haploinsufficiency with increased hepcidin expression is
essential to ameliorate ineffective erythropoiesis in b-thalassemia
(Figure 7).
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Induction of TfR1 expression during erythroid differentiation is
incompletely understood. Although iron is known to negatively
modulate TfR1 expression in nonerythroid cells,69,71,72 iron concen-
tration in hemoglobin-synthesizing cells only mildly alters TfR1
expression.70 More recent data demonstrate that Stat5 signaling is
required for expression of Irp-2, itself the major TfR1 transcriptional
regulator in erythroid precursors.66 Thus, erythroid precursor TfR1
expression is decreased in apoTf-treated b-thalassemic mice because
iron-restricted erythropoiesis reverses ineffective erythropoiesis and
provides feedback to decrease erythropoietin. Consequently, decreased
erythropoietin results in decreased Stat5 signaling and TfR1 expres-
sion,66 providing a rationale for decreased TfR1 expression in apoTf-
treated mice; however, apoTf added in vitro also results in decreased
TfR1 expression in b-thalassemic erythroid precursors, in the absence
of changes in erythropoietin, Stat5 signaling, and Irp-2 expression,
suggesting that apoTf directly influencesTfR1 expression, independent
of these factors. Taken together, the current study demonstrates the
central regulatory role of TfR1 in iron-loading anemias. Although
additional experiments are required to fully elucidate this complicated
set of interactions and their effects on enucleation, we anticipate that
exogenous apotransferrin and TfR1 haploinsufficiency significantly
improve erythroid differentiation, most clearly visible in the proportion
of enucleated erythroblasts. In other words, because b-thalassemic
mice exhibit expandederythropoiesis, improvederythroiddifferentiation
could result in a larger proportion of enucleating erythroblasts than
even in WT mice. Although TfR1 haploinsufficiency is decreased
systemically in double-heterozygotemice, the disproportionately high
concentration of TfR1 on erythroblasts (in relation to other cell types)
causes their particular vulnerability in the haploinsufficient condition,
strongly suggesting that the observed effects are a consequence of
haploinsufficient TfR1, specifically in erythroid precursors.

With the discovery of erythroferrone, hepcidin regulation by
erythropoiesis has recently received renewed attention.25,26 In light of
the systemic iron restriction without decrease in erythroferrone, we
propose that increased hepcidin in TfR11/2mice cannot be explained
without postulating an alternative hypothesis for hepcidin regulation.37

This prior evaluation in hematopoiesis-specific TfR1 haploinsufficient
mice following bone marrow transplant further enhanced the effect on
hepcidin upregulation.37We anticipate equivalent results using double-
heterozygote bone marrow as a source of hematopoietic cells.

Patients with b-thalassemia exhibit varying degrees of ineffective
erythropoiesis and iron overload. Recently, expanded knowledge of
diseasemodifiers has focused attention onmanipulatingmechanisms to
reverse ineffective erythropoiesis. Several sources suggest that
increasing hepcidin concentration is key to improving disease severity;
however, the appropriate hepcidin concentration is individualized, and
an excessive increase results in iron deficiency, preventing complete
reversal of ineffective erythropoiesis. We set out to explore indirect
means of increasing hepcidin in vivo to enable individualized self-
regulation of hepcidin and demonstrate improved ineffective erythro-
poiesis and iron overload in b-thalassemic mice using multiple
means of decreasing TfR1 expression. On the basis of our results in
b-thalassemic mice, we suggest that apoTf is an important potential
therapeutic alternative,most obviously for patientswithb-thalassemia
but also other diseases in which hepcidin is suppressed by expanded

erythropoiesis with upregulation of TfR1. In these circumstances,
exogenousapoTfcould reverse ineffectiveerythropoiesisbysuppressing
TfR1 expression to, in parallel, induce iron-restricted erythropoiesis,
derepressing hepcidin, and prevent systemic iron overload. Because
upregulation of TfR1 is observed in other diseases of ineffective
erythropoiesis with concurrent anemia and iron overload,73 we propose
that TfR1 antagonistswould be rational and apparent therapeutic targets,
potentially useful to improve erythropoiesis and derepress hepcidin,
simultaneously reducing RBC transfusion requirements and preventing/
reversing ironoverload.Anew treatment approachwouldgreatly benefit
this patient population, for whom standard management over the last
half-century has consisted of transfusion followed by chelation therapy.
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