560 research outputs found

    High Pressure Effects on Superconductivity in the beta-pyrochlore Oxides AOs2O6 (A=K, Rb, Cs)

    Full text link
    Recently new pyrochlore oxides superconductors AOs2O6 (A=K,Rb,Cs) were found and we measured the pressure dependence of magnetization up to 1.2 GPa in order to deduce the pressure effect of Tc in the three beta-pyrochlore oxides. It is found that the initial pressure dependence of Tc is positive for all the compounds. Only KOs2O6 exhibits a saturation in Tc at 0.56 GPa and the downturn at higher pressureComment: 7 pages, 2 figure

    Spin-1/2 Triangular Lattice with Orbital Degeneracy in a Metallic Oxide Ag2NiO2

    Full text link
    A novel metallic and magnetic transition metal oxide Ag2NiO2 is studied by means of resistivity, magnetic susceptibility, specific heat and X-ray diffraction. The crystal structure is characterized by alternating stacking of a Ni3+O2 layer and a (Ag2)+ layer, the former realizing a spin-1/2 triangular lattice with eg orbital degeneracy and the latter providing itinerant electrons. It is found that the NiO2 layer exhibits orbital ordering at Ts = 260 K and antiferromagnetic spin ordering at TN = 56 K. Moreover, a moderately large mass enhancement is found for the itinerant electrons, suggesting a significant contribution from the nearly localized Ni 3d state to the Ag 5s state that forms a broad band.Comment: 9 pages, 5 figures, to be published in Rapid Communications, Phys. Rev.

    Tuning the spin dynamics of kagome systems

    Full text link
    Despite the conceptional importance of realizing spin liquids in solid states only few compounds are known. On the other side the effect of lattice distortions and anisotropies on the magnetic exchange topology and the fluctuation spectrum are an interesting problem. We compare the excitation spectra of the two s=1/2 kagome lattice compounds volborthite and vesignieite using Raman scattering. We demonstrate that even small modifications of the crystal structure may have a huge effect on the phonon spectrum and low temperature properties.Comment: 3 pages, 2 figure

    From the triangular to the kagome lattice: Following the footprints of the ordered state

    Get PDF
    We study the spin-1/2 Heisenberg model in a lattice that interpolates between the triangular and the kagome lattices. The exchange interaction along the bonds of the kagome lattice is J, and the one along the bonds connecting kagome and non-kagome sites is J', so that J'=J corresponds to the triangular limit and J'=0 to the kagome one. We use variational and exact diagonalization techniques. We analyze the behavior of the order parameter for the antiferromagnetic phase of the triangular lattice, the spin gap, and the structure of the spin excitations as functions of J'/J. Our results indicate that the antiferromagnetic order is not affected by the reduction of J' down to J'/J ~ 0.2. Below this value, antiferromagnetic correlations grow weaker, a description of the ground state in terms of a Neel phase renormalized by quantum fluctuations becomes inadequate, and the finite-size spectra develop features that are not compatible with antiferromagnetic ordering. However, this phase does not appear to be connected to the kagome phase as well, as the low-energy spectra do not evolve with continuity for J'-> 0 to the kagome limit. In particular, for any non-zero value of J', the latter interaction sets the energy scale for the low-lying spin excitations, and a gapless triplet spectrum, destabilizing the kagome phase, is expected.Comment: 9 pages, 10 Figures. To be published in PR

    Kagom\'{e} ice state in the dipolar spin ice Dy_{2}Ti_{2}O_{7}

    Get PDF
    We have investigated the kagom\'{e} ice behavior of the dipolar spin-ice compound Dy_{2}Ti_{2}O_{7} in magnetic field along a [111] direction using neutron scattering and Monte Carlo simulations. The spin correlations show that the kagom\'{e} ice behavior predicted for the nearest-neighbor (NN) interacting model, where the field induces dimensional reduction and spins are frustrated in each two-dimensional kagom\'{e} lattice, occurs in the dipole interacting system. The spins freeze at low temperatures within the macroscopically degenerate ground states of the NN model.Comment: 5 pages, 3 figures, submitted to PR
    corecore