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We study the spin-1/2 Heisenberg model in a lattice that interpolates between the triangular and the kagome
lattices. The exchange interaction along the bonds of the kagome lattice isJ, and the one along the bonds
connecting kagome and nonkagome sites isJ8, so thatJ8=J corresponds to the triangular limit andJ8=0 to the
kagome one. We use variational and exact diagonalization techniques. We analyze the behavior of the order
parameter for the antiferromagnetic phase of the triangular lattice, the spin gap, and the structure of the spin
excitations as functions ofJ8 /J. Our results indicate that the antiferromagnetic order is not affected by the
reduction ofJ8 down toJ8 /J.0.2. Below this value, antiferromagnetic correlations grow weaker, a description
of the ground state in terms of a Néel phase renormalized by quantum fluctuations becomes inadequate, and the
finite-size spectra develop features that are not compatible with antiferromagnetic ordering. However, this
phase does not appear to be connected to the kagome phase as well, as the low-energy spectra do not evolve
with continuity forJ8→0 to the kagome limit. In particular, for any nonzero value ofJ8, the latter interaction
sets the energy scale for the low-lying spin excitations, and a gapless triplet spectrum, destabilizing the kagome
phase, is expected.
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I. INTRODUCTION

Geometrically frustrated antiferromagnets are the histori-
cal candidates for the realization of aspin liquid ground
state. Indeed, the spin-half Heisenberg antiferromagnet on
the triangular lattice was the first model to be proposed by
Anderson and Fazekas1,2 in 1973 as a system where geomet-
ric frustration and quantum fluctuations could prevent zero-
temperature magnetic ordering in two dimensions, stabilizing
instead a ground state with gapped spin excitations and ex-
ponentially decaying correlations. Since then, a good amount
of work has been devoted to investigate the nature of the
ground state of the triangular Heisenberg model3–14 which
remained an open question until quite recently. At present,
however, there is a general consensus on the existence of
long-range antiferromagnetic order following a 120° Néel
pattern in the ground state of this model;5,6,12,14 frustration
and quantum fluctuations on the two-dimensional triangular
lattice are not strong enough to stabilize a nonmagnetic
ground state.

A more promising candidate for a disordered ground state
can be obtained through a “dilution” of the triangular lattice,
leading to the so-calledkagomenet (Fig. 1). In fact, on this
geometry, due to the lower coordination(z=4 compared with
z=6 in the triangular case), frustration is much stronger and
even in the classical limit it gives rise to an infinite number
of classical ground states, with ordered and disordered con-
figurations degenerate in energy.15–17 Due to the extensive
entropy of the classical ground state, the so-calledorder from
disordermechanism—usually stabilizing, among degenerate
manifolds, long-range ordered configurations—is much less
effective than in other frustrated models. In particular, while
harmonic fluctuations select planar configurations, they turn
out to be completely insensitive to their degree of order, and
only nonlinear effects eventually stabilize a classical ground

state with Néel correlations with aÎ33Î3 pattern(see Fig.
1). Whether such classical minimum energy configuration
possesses true long-range order15 or it is a critical point with
power-law correlations16,17 is still an open issue. In any case,
due to the particularly delicate mechanism leading to the
classical antiferromagnetic order, the latter is expected to be
easily destabilized by quantum fluctuations.

The investigation of the quantum Heisenberg antiferro-
magnet on the kagome lattice has been capturing increasing
attention18–29 for some time now. Mainly on the basis of
numerical work, evidence has accumulated supporting a
spin-liquid ground state, even though a very peculiar one:
this, in fact, would be characterized by a small gap
s,J/20d to spin excitations, and by an exponentially large
number of singlets contiguous to the ground state.25–29 The
classification of spin liquid of Type II has been recently
proposed28 to classify this particular behavior.

On the experimental side, the triangular geometry pro-
vides the scenario for interesting physical phenomena taking

FIG. 1. The depleted triangular lattice. Filled and empty circles
are the kagome and nonkagome sites; solid and dashes lines indi-
cateJ andJ8 bonds of the Hamiltonian(1). The letters A,B,C label
the three different spin directions oriented 120° apart of theÎ3
3Î3 classical Néel state.
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place in the superconducting compounds NaxCoO2−yH2O
(Ref. 31) and the organic materialsk−sBEDT−TTFd2X,
with X being I3, CufNsCNd2gBr or CusSCNd2

32. Two spin-
1/2 kagomelike materials have been also recently reported,
the Volborthite Cu3V2O7sOHd2 2H2O Ref. 33 and the
kagome-staircase compounds Ni3V2O8 and Co3V2O8.

34

In the present work, we consider the spin-1/2 Heisenberg
antiferromagnet on a lattice that interpolates between the tri-
angular and the kagome ones. The Hamiltonian is

Ĥ = Jo
ki j l

Ŝi · Ŝj + J8o
ki j 8l

Ŝi · Ŝj8, s1d

where Ŝi are spin-half operators,ki j l denotes nearest-
neighbor bonds belonging to the kagome lattice, andki j 8l are
the remaining bonds connecting kagome and nonkagome
sites. A scheme is indicated in Fig. 1. In this way,J8=J
corresponds to the usual triangular lattice, whileJ8=0 de-
fines the kagome one. Our aim is to start from the triangular
limit and to investigate the stability of the ordered state as
J8 /J decreases. This is sensible because the classical Néel
state on the triangular lattice is compatible with the expected
Î33Î3 classical ordering on the kagome antiferromagnet.
The first to study this model were Zeng and Elser,22 who
performed a spin-wave analysis and concluded that, for spin-
1/2 particles, the ordered state could be stable forJ8 down to
J8 /J.0.2. Very recently, this model has been investigated
with a coupled cluster treatment.35 This technique is based
on the three-sublattice structure characterizing the 120°-Néel
order of the triangular lattice, which is found to break down
very close toJ8=0, indicating the instability of the magnetic
ordered state very close to the kagome limit.

In this paper, we tackle this problem using variational
approaches, and exact diagonalization of small clusters. In
particular, in Sec. II, we employ the so-called fixed-node
(FN) technique30 in order to improve the accuracy of a wave
function with long-range antiferromagnetic order previously
introduced in the pure triangular case.3,12 This technique, is
usually used in the context of quantum Monte Carlo simula-
tions as a method to approximate the Hamiltonians affected
by sign-problem instabilities30 and obtain exact ground-state
properties of the corresponding “effective Hamiltonian,” no
longer affected by the sign problem. Here we use the FN
method to define a variational state with long-range antifer-
romagnetic order, and we check its accuracy in describing
the ground state of the model asJ8 /J is reduced through a
direct comparison with exact diagonalization results on the
636 cluster. In order to detect any indication of a change in
the nature of the ground state approaching the kagome limit,
in Sec. III we analyze the structure of the low-energy spectra
as a function ofJ8 /J, using the exact diagonalization of the
Hamiltonian on small clusters. Section IV is finally devoted
to summary and conclusions.

II. VARIATIONAL APPROACHES

A fairly accurate representation of the ground state of the
spin-1/2 Heisenberg antiferromagnet on the triangular lattice
can be obtained starting from a 120° Néel ordered state and

including Gaussian fluctuations by means of a Jastrow factor
containing two-spin correlations3,12

ucvl = P̂0 expS1

2o
i,j

vsi − jdŜi
zŜj

zDuNl, s2d

whereP̂0 is the projector onto theSz=0 subspace,uNl is the
classical Néel state in thexy plane,

uNl = o
x

expF2pi

3 So
iPB

Si
z − o

iPC
Si

zDGuxl, s3d

and uxl is an Ising spin configuration specified by assigning
the value ofSi

z for each site. On the square lattice case, the
classical Néel state reproduces exactly the phases of the
ground state of the Heisenberg Hamiltonian according to the
Marshall theorem.12 On the triangular lattice, instead, the
exact phases of the ground state are unknown, and the clas-
sical part of the wave function(2) does not reproduces them
accurately. However, as originally suggested by Huse and
Elser,3 a very accurate ansatz of the ground-state phases can
be obtained by including three-spin correlation factors of the
form:

Tsxd = expSi b o
ki,j ,kl

gi jkSi
zSj

zSk
zD , s4d

defined by the coefficientsgi jk =0, ±1, appropriately chosen
so as to preserve the symmetries of the classical Néel state,
and by the variational parameterb. In particular the sum in
Eq. (4) runs over all distinct triplets of sitesi,j ,k where both
i and k are nearest neighbors ofj , and i and k are next-
nearest neighbors to one another. The sign factorgi jk =gkji
= ±1 is invariant under rigid translations and rotations in real
space by an angle of 120° of the three-spin clusteri,j ,k, but
changes sign under rotations by 60°. The resulting wave
function reads therefore:

ucvl = P̂0o
x

VsxdexpS1

2o
i,j

vsi − jdSi
zSj

zDuxl, s5d

with the phase factor given by

Vsxd = TsxdexpF2pi

3 So
iPB

Si
z − o

iPC
Si

zDG . s6d

Since the Hamiltonian is real, a better variational wave func-
tion is defined by the real part of Eq.(5).

The two-body Jastrow potential in(5) contains in prin-
ciple as many variational parameters as the independent dis-
tances on the lattice. However, the same level of accuracy
can be obtained by optimizing separately the nearest-
neighbor and next nearest-neighbor distances and adopting
for the longer-range correlations an expression based on the
consistency with linear spin-wave theory:12

vsrd =
h`

N
o
qÞ0

e−iq·rvq s7d

with
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vq = 1 −Î1 + 2gk

1 − gk
, s8d

gk=2scoskx+2 coskx/2 cosÎ3ky/2d andh` is a variational
parameter. For the anisotropic triangular lattice(see Fig. 1)
we have optimized separately the nearest-neighbor bonds
connecting two kagome sitessh1d, and a kagome site and a
nonkagome sitesh18d, as well as the next-nearest-neighbor
bondssh2d. As a result, the total number of variational pa-
rameters for the present variational wave function is 5. Their
optimal values, and the corresponding variational energies,
are reported forN=36 in Table I, for various values ofJ8 /J.

The accuracy of the present long-range ordered wave
function in the triangular lattice limitsJ8 /J=1d has been ana-
lyzed in detail in Refs. 12 and 13. In this limit the wave
function is known to provide a qualitatively correct represen-
tation of the ground-state correlations.3,12–14 In order to
check the accuracy within a larger range ofJ8 /J we have
compared several variational properties with the exact
ground-state values calculated by exact diagonalization on
the largest cluster presently accessible,N=36. As shown in
Fig. 2, for 0.4&J8 /Jø1 both the accuracy on the ground-
state energy and the overlap with the exact ground state,
remain approximatively constant and equal to the values in
the triangular limitsJ8 /J=1d. In addition, the wave function
(2) provides an accurate representation of the phases of the
actual ground state up toJ8 /J.0.2, as it can be checked by
measuring the average-sign

ksl = o
x

sgnfcsxdc0sxdguc0sxdu2, s9d

with uc0l=ox csxduxl (Fig. 2). This remarkable feature is due
to the presence of the triplet term(4), allowing us to adjust
the phases in a nontrivial way, without changing the under-
lying Néel order. For instance, in the triangular limit the
average sign(overlap) of the wave function is 0.733(0.562)
without the triplet term and 0.932(0.779) with it.

Since the variational wave function(2) reproduces accu-
rately the phases of the ground state its quality can be im-
proved by adopting the FN scheme of Ref. 30. This allows
one to obtain a new variational wave function,ucFNl, defined
as the ground state of the so-called FN effective Hamil-

tonian, whose matrix elements,Hx,x8
eff , can be constructed

starting from the original Hamiltonian and a variational
guess on the ground-state phases given, in our case, by the
wave function(5), ucvl=ox cvsxduxl:

Hx8,x
eff = 5Hx8,x if H̄x8,x ø 0

0 if H̄x8,x . 0

Hx,x + Vsxd x = x8

s10d

whereH̄x8, x=cvsx8dHx8, x/cvsxd, and

Vsxd = o
hH̄x8, x.0, x8Þxj

H̄x8,x. s11d

Indicating with E0
FN the ground-state energy of the FN

Hamiltonian, with Ev
FN=kcFNuĤucFNl / kcFNucFNl and Ev

=kcvuĤucvl / kcv ucvl the energy expectation values onucFNl
and ucvl, respectively, it is possible to show30 that the fol-
lowing chain of inequalities holds:

Ev ù E0
FN ù Ev

FN ù E0,

where E0 is the ground-state energy ofĤ. Hence, the FN
procedure is granted to produce a wave function with a better
variational energy thanucvl. In addition, also the lowest ei-
genvalue of the FN Hamiltonian,E0

FN, gives an upper bound
of the ground-state energy better than the variational energy
Ev. This is the quantity which is usually considered in the

TABLE I. Variational parameters and variational energies for
the spin-wave wave function(5) for different values of the ratio
J8 /J on theN=36 cluster. The Lanczos exact values of the energy
are also reported for comparison.

J8 /J b h1 h18 h2 h` Ev /J E0/J

0.1 0.20 −0.63 −0.58 0.055 1.00 −10.7687 −12.0799

0.2 0.20 −0.63 −0.58 0.055 1.00 −11.7299 −12.7120

0.3 0.20 −0.63 −0.58 0.055 1.00 −12.6911 −13.5026

0.4 0.20 −0.63 −0.58 0.055 1.00 −13.6522 −14.3708

0.6 0.20 −0.65 −0.62 0.055 1.00 −15.5730 −16.2287

0.8 0.23 −0.70 −0.69 0.055 1.00 −17.4873 −18.1754

1.0 0.23 −0.73 −0.73 0.055 1.00 −19.4239 −20.1734

FIG. 2. Results on theN=36 cluster. Upper panel: Relative error
on the ground-state energy, for the spin-wave(empty triangles) and
FN (full triangles) wave functions. Stars refer to the accuracy of the
upper bound on the energy given by the lowest eigenvalue of the
FN Hamiltonian,E0

FN. Lower panel: average sign of both the spin-
wave and FN wave function(circles) and their overlap with the
exact ground state(same symbols as above). Inset: antiferromag-
netic order parameter. The circles are the exact ground-state values,
while empty and full triangles correspond to the results obtained
with spin wave and FN wave functions, respectively. Lines are
guides for the eye.
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quantum Monte Carlo application since it is the most directly
accessible.

The FN Hamiltonian is explicitly defined in such a way

that the matrixH̄x8, x
eff =sgnfcvsx8dgHx8, x

eff sgnfcvsxdg has all
negative off-diagonal matrix elements. By the Perron-
Frobenius theorem, the amplitudes of the ground state of this

matrix, c̄FNsxd, have the same sign for all the configurations
uxl. This implies in turn that the FN ground state,ucFNl, and
the starting variational wave function,ucvl, have exactly the
same phases. In fact, the amplitudes of the ground state of
Hx8, x

eff , cFNsxd, are related to the amplitudes of the ground

state of the transformed matrixH̄x8, x
eff , c̄FNsxd, by the simple

relation c̄FNsxd=cFNsxdsgnfcvsxdg. For this reason, the FN
wave function is expected to provide an accurate description
of the ground state only when it is constructed with a good
variational ansatz of the ground-state phases. In the present
case for 0.2&J8 /Jø1.

In order to thoroughly check the accuracy of the FN wave
function, we have exactly diagonalized with the Lanczos al-
gorithm the FN Hamiltonian for several values ofJ8 /J on the
N=36 cluster. This has allowed us to calculate not only the
FN energies but also the overlap of the FN wave function
with the exact ground state. As shown in Fig. 2, both the FN
upper bounds to the ground-state energy,Ev

FN and E0
FN, are

sizably more accurate than the simple variational estimate
Ev. In particular, the FN wave functions has a much higher
overlap thanucvl, and its accuracy is almost constant and
comparable to the one in the triangular limit down to values
of J8 /J as small as,0.2.

We have finally compared the variational, FN, and exact
estimates of the antiferromagnetic order parameter for a 120°
Nèel order,

m†2 = 36
M2

NsN + 6d
, s12d

whereM2 is the sublattice magnetization squared.6 Interest-
ingly, by decreasingJ8 /J the exact ground-state order param-
eter remains approximatively constant down toJ8 /J.0.2
thus indicating a possible destabilization of the antiferromag-
netic order only very close to the kagome limit. In addition,
though the variational and FN estimates of the order param-
eter are approximatively 10% higher than the exact one the
same degree of agreement is observed in all the range 0.2
&J8 /Jø1. For theN=36 cluster, the FN wave function,
based on the variational wave function(5), provides a good
quantitative description of the exact ground state for 0.2
&J8 /Jø1. In this range, the variational and the exact expec-
tation values of antiferromagnetic order parameter remain
constant and equal to their values in the triangular limit.
Below J8 /J.0.2, the exact value of the order parameter be-
gins to decrease and the accuracy of the our Néel ordered
wave function quickly degrades, indicating a change in the
ground-state correlations only very close to the kagome
limit.

In order to support further the stability of the antiferro-
magnetic phase for very small values ofJ8 /J we have ex-
tended the variational and the FN calculations of the order

parameterm† to much larger sizes by using quantum Monte
Carlo techniques.36 As shown in Fig. 3, even at a value of
J8 /J=0.2, the lowest coupling ratio when the variational
wave function is expected to be accurate(see Fig. 2), the
order parameterm† remains sizably larger than the triangular
J8 /J=1 case. This indicates that, as we increase the size at
fixed ratio J8 /J,1, the stability of the ordered phase, al-
ready evident in the exact diagonalization in theN=36 clus-
ter (see Fig. 2), becomes more and more clear. We expect
that this qualitative behavior, confirmed both by the exact
diagonalization, and even more strongly by the variational
and the FN approaches on larger sizes, is a genuine feature of
the model, even though the quantitative results that we have
obtained by quantum Monte Carlo may be affected by a siz-
able error. This feature may appear rather surprising, as the
quantum fluctuations should increase for smallJ8 /J and
should tend to destabilize the ordered phase, as expected for
instance within spin-wave theory.18 However, the wave func-
tion that we have used is consistent with spin-wave theory in
the large spin limit, and therefore, since also at the varia-
tional level the value ofm† increases, we conclude that the
quantum fluctuations are not very accurately described
within a method that is not controlled by the variational prin-
ciple (the large spin limit), at least in the region of small
J8 /J.

A similar size-scaling analysis can be carried out to esti-
mate the ground-state energy per spin in the thermodynamic
limit as illustrated in Fig. 4. The extrapolated energies are
listed in Table II. Since the FN energy error is known exactly
up to the 636 cluster, we can estimate the ground-state en-

FIG. 3. Size scaling of the antiferromagnetic order parameter for
the spin-wave(empty symbols and dashed lines), and the FN(full
symbols and dotted line) wave functions:J8 /J=0.2 (triangles),
J8 /J=1.0 (squares).

FIG. 4. Size scaling of the ground-state energy per spin for
J8 /J=0.2: Spin-wave wave function(empty triangles), FN (full
triangles).
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ergy in the thermodynamic limit, by adding the 636 correc-
tion to the infinite-size FN estimate. The corresponding ex-
trapolated values of the ground-state energy shown in the
Table II represent reasonable benchmark values for this
quantity (or at least good upper bounds), as the FN error is
expected to increase weakly for larger sizes even for a good
variational ansatz. This behavior has been verified up to 6
36, and is also very reasonable to expect in general for an
approximate variational calculation.

In the triangular limit,J8 /J=1, our estimated ground-state
energy coincides with the corresponding one obtained with
the coupled cluster method35 by extrapolating in the size of
the clusters(m→`, with the notations of Ref. 35). This
value is instead slightly lower than the extrapolated results
based on small clusterssNø36d obtained in Ref. 6, giving
e0=−0.5445. A good agreement between the coupled cluster
for m=6 and the FN method is also seen for values ofJ8 /J
down to 0.2(Table II). Furthermore, our extrapolated ener-
gies, based on the error for the 6 cluster and the FN energy,
remain lower than them=6 coupled cluster result by a simi-
lar amount, suggesting that our variational approach remains
accurate enough also in this region(unfortunately the ex-
trapolationsm→` are not given in Ref. 35 for 0,J8 /J,1).
Instead in the kagome limit our variational ansatz should be
clearly less accurate, as the ground state is believed to be a
spin liquid with no magnetic order in the thermodynamic
limit, i.e., qualitatively different from our initial variational
guess given by Eq.(2). This may explain why in this case
our energy estimate is slightly higher than them→` coupled
cluster result. We note, however, that our values reported in
Table II represent in general reasonable upper bounds for the
energy, as they are obtained by a rigorous variational method
such as the FN one.

III. LOW-ENERGY EXCITATIONS

An effective method to investigate the possibility of mag-
netic order in spin systems is to analyze the structure of the
spectrum of finite-size samples, following the strategy of
Refs. 5, 6, and 25. The tendency toward antiferromagnetic
order in the thermodynamic limit manifests itself in finite-
size clusters through the fact that the spin excitations with
the lowest energies can be described by the effective Hamil-
tonian of a “quantum top.” Within such a description, the

energy of the lowest levels in the different subspaces labeled
by total spinS, can be approximated by,

EN sSd − EN s0d =
SsS+ 1d

2IN
, s13d

where IN is the inertia of the top, which is an extensive
quantity. Hence, the plots of the lowest energy levels as func-
tions ofSsS+1d, have the appearance of a “Pisa tower” with
a slope that decreases asN increases. An important property
of the states of the “Pisa tower”(indicated in Ref. 6quaside-
generate joint states) is that they belong to irreducible rep-
resentations of the point group that are compatible with the
symmetry of the ordered state. In the case of theÎ33Î3
order, these are the representations labeled asG1,G2,G3 of the
C3v group, which correspond tofk =0,RpC=C ,R2p/3C
=C ,sxC=Cg; fk =0,RpC=−C ,R2p/3C=C ,sxC=Cg; fk
=Q ,RpC=C ,R2p/3C=C ,
sxC=Cg, respectively. We have followed the same notation
of Refs. 5, 6, and 25,Rf denoting a rotation off,sx, a
reflection with respect to a mirror plane with the normal
pointing alongx, and beingQ=s2p /3 ,−2p /3d, the corner of
the Brillouin zone of the kagome lattice.

There are not so many finite periodic clusters, which can
be exactly diagonalized and that interpolate between the tri-
angular and kagome lattices without frustrating the antiferro-
magnetic order. The smallest ones areN=12 and N=36,
which evolve, respectively, towardN=9 and N=27 at the
pure kagome limitsJ8=0d. The unit cell of the interpolating
lattice contains 232 unit cells of the pure triangular lattice,
implying a reduction of the translation operations of the pe-
riodic cluster of a factor 4 with respect to the number of
translations at the pure triangular limit. This implies a much
bigger Hilbert space to be dealt with in the numerical proce-
dure. In concreteness, even exploiting all the available sym-
metries, the number of states is 42035724 forN=36 spins. In
this cluster, a complete study of several excited states within
different spin sectors for several values ofJ8 is prohibitive
from the computational point of view, while theN=12 clus-
ter maybe too small. We have, therefore, included in the
analysis the clusters withN=16 and N=28 sites (which
evolve toward kagome clusters withN=12 andN=21, re-
spectively), by introducing twisted boundary conditions as
explained in Refs. 6 and 25. The latter are equivalent to

TABLE II. Ground-state energy per spin for different values of theJ8 /J ratio obtained with the spin-wave
wave functionsevd, the FN techniquese0

FNd, and the estimated ground-state energysẽ0
FNd obtained by assum-

ing that the FN error in the energy is weakly size dependent(see text). The data forJ8 /J=0 are normalized
to give the energy per spin on the kagome lattice. Uncertainties are of the order of one unit on the last digit.
The coupled cluster method results, from Table I and Fig. 2 of Ref. 35, are also shown for comparison.

J8 /J 0.0 0.2 0.4 0.6 0.8 1.0

ev −0.369 −0.324 −0.374 −0.425 −0.478 −0.532

e0
FN −0.392 −0.334 −0.381 −0.431 −0.482 −0.537

Ref. 35sm=6d −0.418 −0.346 −0.390 −0.438 −0.490 −0.543

ẽ0
FN −0.419 −0.349 −0.393 −0.443 −0.494 −0.550

Ref. 35sm→`d −0.4252 −0.5505
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rotate the local frame ins±2p /3 ,72p /3d at each translation
along a unitary lattice vector. This procedure restores the
otherwise frustrated antiferromagnetic order in thex,y spin
plane but obviously breaks the spin-rotational symmetry as
well as some symmetry operations of the point group. For
this reason, in this case, a law like that expressed in(13),
with the replacementSsS+1d→Sz

2, should be obeyed by the
quasi degenerate joint states, as the totalSz along thez axis,
cannot couple with the remaining total spin components in
the clusters with twisted boundary conditions. Results are
shown in Figs. 5–7 forN=12, 16, and 28, respectively. Fig-
ures 5 and 6 show the full spectra, obtained by diagonalizing
all the blocks of the Hamiltonian matrix. In the case ofN
=28 (Fig. 7), we have not diagonalized the full Hamiltonian

but obtained the lowest eigenvalues within all the subspaces
using the Lanczos algorithm.

We have plotted the states with symmetries compatible
(noncompatible) with the antiferromagneticÎ33Î3 order
with crosses(circles). The first striking feature is the fact that
only a subset of the states forming the “Pisa tower” in the
triangular limit remains aligned asJ8 /J decrease. Those
states build up, so to say, a “small Pisa tower,” whose slope
decreases withJ8.

In order to analyze in more detail the behavior of the
states along the “small Pisa tower” we show zooms of the
low-energy and low-spin sector of the spectra for theN=12,
andN=28 clusters in Figs. 8 and 9, respectively. In the case
of N=12, shown in Fig. 8, this small set contains levels that
belong to representations compatible with theÎ33Î3 order

FIG. 5. Energy spectra as functions ofSsS+1d for a cluster with
N=12 spins, periodic boundary conditions, andJ8 /J=0.8, 0.6, 0.4,
0.2 (left to right and top to bottom). The crosses(circles) indicate
energy levels belonging to symmetry representations compatible
(incompatible) with the Î33Î3 magnetic order.

FIG. 6. Energy spectra as functions ofSz
2 for a cluster withN

=16 spins and twisted boundary conditions. Details are the same as
in Fig. 5.

FIG. 7. Lowest energy levels within the differentSz
2 subspaces

for N=28 and twisted boundary conditions. Details are the same as
in Fig. 5.

FIG. 8. Detail of the low-lying energy levels close to the
kagome limit for a cluster withN=12 spins and periodic boundary
conditions. The lower panel shows the behavior of the low energy
levels at the kagome limit in a cluster withN=9 sites. Details are
the same as in Fig. 5.
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and they remain aligned within all the range 0.1øJ8 /Jø1.
Signatures of departure from that behavior are observed for
very low J8 /J=0.05, where the lowest level withS=2 devi-
ates from the line of the “small Pisa tower” while a state with
a symmetry not compatible with the antiferromagnetic order
becomes quasidegenerate with it. In Fig. 8 the data for the
relatedN=9 kagome lattice are also shown. In that case, a
similar deviation of the state withS=5/2 from the line con-
necting the lowest levels in theS=1/2 andS=3/2 sectors is
observed but within a scale which is an order of magnitude
larger in the energy axis. Another contrasting feature that
comes from the comparison betweenJ8=0 andJ8Þ0 is that
in the pure kagome limit, there are two states withS=1/2
(one of them belonging to the manifold of the degenerate
ground state) whose symmetries are not compatible with the
Î33Î3 order that have energies within the spin gap. Instead
for J8 /J=0.05 the spin gap is clean from such states. In
addition, the gap to the lowest excitation withDS=1 does
not evolve with continuity forJ8 /J→0 to the corresponding
gap in the kagome limit(see also Fig. 10).

Similar remarks apply to the 16- and 28-sites clusters
shown in Figs. 6 and 7. In these cases, see e.g., Fig. 9, the
“small Pisa Tower” contains a larger number of states but the
deviation from a perfect alignment is observed already at
J8 /Jø0.2, where states within subspaces not compatible
with the Î33Î3 order appear at low energies. In particular,
for Sz=1 one of those states is almost degenerate with the
one belonging to the Pisa tower while forSz=2 it is well
below it. As in theN=12 cluster, also forN=16 and 28 the
gap to the first spin excitation monotonically decreases with
J8 (Fig. 10).

To complete the analysis, we have computed the ground-
state energysE0d and the lowest eigenvalue in the subspace
with S=1 within the representationG1 of C3v sES=1,G1

d, in the
periodic lattice withN=36 sites. The latter does not actually
correspond to the lowest energyS=1 excitation in the pure
triangular limit, which is in the subspace corresponding to
G2. In any case, the energy differenceD=ES=1,G1

−E0 is, in

general, an upper bound for the spin gap of the cluster in all
the range 0,J8 /Jø1. The behavior ofD as a function ofJ8
is shown in Fig. 10. As in the clusters previously considered,
the gap decreases rapidly asJ8 decreases, and, in particular,
it does not evolve continuously forJ8→0 towards the value
of the corresponding kagome lattice(N=27, indicated with
an open square in Fig. 10). Instead, it tends to a value which
is even smaller than the magnitude of the spin gap for the
N=36 kagome lattice(indicated by a cross in the same fig-
ure). This is in contrast with the behavior exhibited by the
ground-state energy, which evolves smoothly toward the
value of theN=27 kagome lattice(see the inset of Fig. 10).

The behavior of the spin gap and the spectra strongly
suggests the closing of the spin-gap in the thermodynamic
limit within the whole range of 0,J8 /Jø1. In fact, such
gap is known to close in the thermodynamic limit at the
triangular pointsJ8 /J=1d (Refs. 5, 6, and 12) and it de-
creases systematically by decreasingJ8 in all the cluster con-
sidered as the low-energy scale for the lowest-spin excita-
tions is set byJ8, i.e., by the states of the “small Pisa tower.”
This can be understood in a simple uncorrelated framework
where forJ8,J the lowest spin-excitations are clearly ob-
tained through a spin-flip on a nonkagome site, with an en-
ergy cost 6J8, compared to a cost 4J+2J8 for a spin-flip on a
kagome site. As the number of nonkagome spins is just a
fraction of the total number of sites, on a finite cluster such a
mechanism would apply only to the lowest spin excitations:
hence the reduction of the number of states belonging to the
“Pisa tower” with respect to the triangular case.

This simple picture immediately suggests that the nature
of the spin excitations is intrinsically different for finiteJ8
and in the pure kagome limit. In the latter case, in fact, the
spins on the nonkagome sites do not belong to the Hilbert
space of the model and such low-energy spin excitations are
not possible. For this reason by turning on theJ8, the spin

FIG. 9. Detail of the low-lying energy levels close to the
kagome limit for a cluster withN=28 spins and twisted boundary
conditions. Details are the same as in Fig. 5.

FIG. 10. Gap to the lowest excitation withDSz=1 for N=12
(circles), N=28 (triangles), and (in the G1 representation) N=36
(squares). The open circle and square atJ8=0 indicate the value of
the spin gap for theN=9 andN=27 kagome cluster(corresponding
to the N=12 andN=36 depleted triangular clusters). The cross at
J8=0 corresponds to a kagome cluster withN=36. Inset: The
ground-state energy as function ofJ8 (open diamonds). The filled
diamond indicates the ground-state energy of the kagome cluster
with N=27 spins.
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gap has a finite discontinuity and it is reasonable to expect
the model to be unstable under the perturbation introduced
by J8 bonds. This is also confirmed by the analysis of the
low-energy excitations for small values ofJ8 /J (see Fig. 8).

One step further in the analysis of the nature of the
ground state leads to the question whether or not the latter
remains ordered down to the kagome limit. The structure of
the spectra of the smallN=12 cluster indicates that could
well be the case, while those ofN=16 andN=28 suggests
some change in the nature of the ground state aroundJ8 /J
,0.2. It is worth recalling, however, that the results for the
two latter clusters have been obtained by using twisted
boundary conditions which could lead to weaker signatures
of ordering. On the other hand, in two dimensions, it seems
difficult to conceal the possibility of the closing of the spin
gap with the absence of some kind of magnetic order. A
simple geometrical analysis reveals that the nonkagome
spins, which we have already identified as the responsible of
the lowest-energy excitations, form themselves a triangular
lattice with a cell parameter twice the size of the one of the
usual triangular lattice. Therefore, a possible scenario for the
evolution of the ground state asJ8 decreases could be that at
some point a crossover takes place from a magnetic order in
the usualÎ33Î3 pattern to a magnetic order with a similar
pattern but in the triangular lattice of the nonkagome spins.
Both kinds of order are commensurate and the ground state
could undergo a smooth evolution from one to the other.

IV. SUMMARY AND CONCLUSIONS

We have investigated the low energy properties of aJ8
−J triangular lattice that interpolates between the usual tri-
angularsJ8 /J=1d and kagomesJ8=0d lattices. To this end,
we have used a variational approach based on a FN wave
function accurately describing the ground state in the trian-
gular sJ8 /J=1d limit, and exact diagonalization techniques.

We have analyzed the quality of the approximation to the
exact ground state, provided by the FN technique in a peri-
odic cluster withN=36 sites and then extended the calcula-
tion up toN=144 sites by using quantum Monte Carlo cal-
culations. We have found that such a wave function,

describing a state with aÎ33Î3 Néel ordered phase, is very
close to the exact one for 0.2&J8 /Jø1 and that in this range
its accuracy is almost independent of theJ8 /J ratio. Consis-
tently, the ground-state expectation value of the antiferro-
magnetic order parameter remains approximately constant
down toJ8 /J.0.2. Below this value the order parameter is
suppressed and the quality of the FN wave function de-
grades, suggesting a change in the nature of the ground-state.
This is also confirmed by the analysis of the low-energy
spectra on small clusters, showing some signatures of insta-
bility of Néel ordering forJ8 /J&0.2. However, at the same
time, such analysis also indicates quite clearly that the low-
energy scale for spin excitations is set byJ8 and that in
particular the spin-gap has a finite discontinuity atJ8 /J=0,
the triplet excitations being gapless for any nonzero value of
J8 /J. This would imply that the kagome disordered phase is
unstable against a slight perturbation tending to restore the
z=6 coordination number of the triangular lattice. A possible
scenario is that within the large amount of singlets that are
quasidegenerate with the ground state in the kagome clusters,
the one corresponding to theÎ33Î3 state is favored by
some kick produced byJ8.

Our results are in disagreement with the predictions of the
spin-wave theory of Ref. 18, indicating a progressive reduc-
tion of the antiferromagnetic ordering forJ8 /J,1 and a
complete melting of theÎ33Î3 order forsJ8 /Jdc.0.2. In-
stead, our conclusions are closer to those of the recent
coupled cluster treatment of Farnellet al.35 providing evi-
dence for instability of the antiferromagnetic order very close
or possibly at the kagome pointssJ8 /Jdc=0.0±0.1d, and the
existence for smallJ8 /J of a regime whose correlations are
very different to those of the triangular antiferromagnet. Fur-
ther investigations are necessary to clarify the nature of this
regime.
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