1,012 research outputs found

    Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED

    Get PDF
    In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED within the context of Dyson-Schwinger equations. In D < 4 dimensions the theory has solutions which exhibit chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both numerically and, with some approximations, analytically within the rainbow approximation in the Landau gauge. In particular, we discuss how to extract the critical coupling alpha_c = pi/3 relevant in four dimensions from the D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within the currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.

    Regularization-independent study of renormalized non-perturbative quenched QED

    Get PDF
    A recently proposed regularization-independent method is used for the first time to solve the renormalized fermion Schwinger-Dyson equation numerically in quenched QED4_4. The Curtis-Pennington vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the alternative regularization schemes of modified ultraviolet cut-off and dimensional regularization. Our new results are in excellent numerical agreement with these, and so we can now conclude with confidence that there is no residual regularization dependence in these results. Moreover, from a computational point of view the regularization independent method has enormous advantages, since all integrals are absolutely convergent by construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power law behaviour in the asymptotic region, which is confirmed numerically with high precision. The successful demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken in the near future.Comment: 20 pages,5 figure

    Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3

    Full text link
    We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum space for the dynamically generated mass function in QED3. Starting from the Landau gauge results in the rainbow approximation, we construct solutions in other covariant gauges. We confirm that the chiral condensate is gauge invariant as the structure of the LKFT predicts. We also check that the gauge dependence of the constituent fermion mass is considerably reduced as compared to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few Body System

    On Renormalized Strong-Coupling Quenched QED in Four Dimensions

    Get PDF
    We study renormalized quenched strong-coupling QED in four dimensions in arbitrary covariant gauge. Above the critical coupling leading to dynamical chiral symmetry breaking, we show that there is no finite chiral limit. This behaviour is found to be independent of the detailed choice of photon-fermion proper vertex in the Dyson-Schwinger equation formalism, provided that the vertex is consistent with the Ward-Takahashi identity and multiplicative renormalizability. We show that the finite solutions previously reported lie in an unphysical regime of the theory with multiple solutions and ultraviolet oscillations in the mass functions. This study supports the assertion that in four dimensions strong coupling QED does not have a continuum limit in the conventional sense.Comment: REVTEX 3.0, 15 pages,including 4 eps files comprising 3 figures. Submitted to Phys. Rev.

    SAperI: Approaching Gender Gap Using Spatial Ability Training Week in High-School Context

    Get PDF
    The purpose of this paper is to describe the structure of a girls summer school, “SAperI – Spatial Ability per l’Ingegneria” (in English, “Knowledge – Spatial Ability for Engineering”), and to illustrate its impact on spatial ability development and future career preferences on those who participated in the week long summer school compared to a control group that did not participate.The 5 days school,organized by Politecnico di Torino (Italy), was included in a larger project addressing 17 years old high-school students. Thirtyseven girls actively took part in a summer school, while 167 students (both males and females) were tested as a controlled group.For those who attended the summer school, significant gains were observed in four measures of spatial ability - mental rotation, spatialvisualization, mental cutting and paper folding. For a minority of participants, scores on one of these tests, paper folding, were lower when measured at the end of the summer school but this was an exception. Furthermore, when tested several months after the summer school, the gains in spatial ability that were made during the course were maintained indicating stability over time with regard to the improvement in spatial ability.In terms of the experience of taking the course, the feedback provided was very positive and all but one participant would recommend the summer school to othergirls at this stage of high school

    Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED4_4

    Get PDF
    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched QED4_4. Results are compared for three different fermion-photon proper vertex {\it Ans\"{a}tze\/}: bare γμ\gamma^\mu, minimal Ball-Chiu, and Curtis-Pennington. The procedure is straightforward to implement and numerically stable. This is the first study in which this technique is used and it should prove useful in future DSE studies, whenever renormalization is required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure

    Deep analysis of CD4 T cells in the rhesus CNS during SIV infection

    Get PDF
    Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)—known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART
    corecore