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Renormalized strong-coupling quenched QED in four dimensions
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Anthony G. Williams
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We study renormalized quenched strong-coupling QED in four dimensions in an arbitrary covariant gauge.
Above the critical coupling leading to dynamical chiral symmetry breaking, we show that there is no finite
chiral limit. This behavior is found to be independent of the detailed choice of photon-fermion proper vertex in
the Dyson-Schwinger equation formalism, provided that the vertex is consistent with the Ward-Takahashi
identity and multiplicative renormalizability. We show that the finite solutions previously reported lie in an
unphysical regime of the theory with multiple solutions and ultraviolet oscillations in the mass functions. This
study is consistent with the assertion that in four dimensions strong coupling QED does not have a continuum
limit in the conventional sense.@S0556-2821~97!03606-0#

PACS number~s!: 12.20.Ds, 11.30.Qc, 11.30.Rd

I. INTRODUCTION

A useful approach to studying the mechanism of dynami-
cal chiral symmetry breaking~DCSB! is through the Dyson-
Schwinger equation~DSE! formalism@1–3#. The infinite set
of coupled DSE’s must always be truncated at some point,
but we can still make progress by closing off the tower of
equations with a suitableAnsatzconsistent with all appropri-
ate symmetries of the theory and having the correct pertur-
bative limit. While not a complete first principles treatment
of a theory, this approach is nonetheless a useful tool, since
it does allow Lorentz covariance to be maintained as well as
allowing for the infrared~IR! and ultraviolet~UV! limits to
be numerically taken in a straightforward way. In addition,
model-independent results following from symmetry prin-
ciples alone can still be obtained and numerically verified in
a rigorous way as we will see. On the other hand, lattice
gauge theory~LGT! studies @4# are a first principles,
approximation-free approach, but they still present a signifi-
cant computational challenge when attempting to verify ul-
traviolet and infrared limits@1,2#.

The Abelian nature of quantum electrodynamics~QED! in
many ways makes it a much simpler system to study than a
non-Abelian theory such as quantum chromodynamics
~QCD!. For this reason it has been the subject of many non-
perturbative studies, which have as their long-term goal a
detailed understanding of nonperturbative QCD. On the
other hand, strong-coupling four-dimensional QED~QED4)
is widely anticipated to behave unconventionally in the con-
tinuum limit and for this reason is a theory of considerable
interest in its own right.

In any well-behaved theory with dynamical chiral sym-
metry breaking, there are~at least! two solutions:~i! One of
these has a mass function which vanishes identically in the
absence of a nonzero bare mass and exists for all values of

the coupling, and~ii ! the other, which exists only above criti-
cal coupling, corresponds to the presence of dynamical chiral
symmetry breaking. Below critical coupling the former
chiral-symmetric solution is stable, whereas above critical
coupling the latter is the stable solution. This is just the sce-
nario found in studies of the Nambu–Jona-Lasinio model,
for example~see, e.g., Ref.@5# and references therein!.

In previous work @6# we first introduced a numerical
renormalization procedure and applied it to QED4 with a
quenched photon propagator using the Dyson-Schwinger for-
malism. The regularization used in this work was a momen-
tum cutoff scheme. This is a direct application of the stan-
dard renormalization procedure to the nonlinear self-
consistent framework needed to study dynamical chiral
symmetry breaking. This initial work, in the Landau gauge,
was recently generalized to arbitrary covariant gauges@7#.
The central result of these two works was to demonstrate that
the numerical renormalization procedure works extremely
well and allows the continuum limit (L→`) to be taken
numerically, while giving rise to stable finite solutions for
the renormalized fermion propagator.

In this article we investigate the chiral limit in renormal-
ized quenched strong-coupling QED4, using a photon-
fermion vertex that satisfies the Ward-Takahashi identity
~WTI! and makes the fermion DSE multiplicatively renor-
malizable. We find that for couplings above the chiral critical
coupling, keeping the bare massm0(L)[0 as the cutoff is
relaxed results in either a dynamical mass function which is
identically zero everywhere or a dynamical mass function
which diverges with the cutoff. The finite solutions described
in previous articles@6,7# showed damped oscillations in the
dynamical mass functions at largep2, which suggested that
they were unphysical. Further, we show here that for a given
supercritical coupling and the same bare massm0(L), it is
possible to have multiple solutions corresponding to different
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renormalized massesm(m). We conclude that quenched
strong-coupling QED in four dimensions does not have a
chiral limit in the conventional sense above the chiral phase
transition.

In Sec. II we briefly summarize the renormalized Dyson-
Schwinger equation formalism, the numerical renormaliza-
tion procedure, and a particular fermion-photon vertexAn-
satz that we use to illustrate our general arguments
numerically. In Sec. III we demonstrate the scaling of the
DSE solutions with zero bare mass for supercritical coupling
and the existence of multiple solutions with the same bare
mass; we also present a general argument to show that a
vertex which is consistent with the WTI and multiplicative
renormalizability leads to a diverging mass function above
critical coupling in the continuum limit. We discuss these
results and their relevance to QCD and to unquenched
QED4 in Sec. IV. For further details and references and an
expanded discussion we refer the reader to Refs.@1,6,7#.

II. FORMALISM

Dynamical chiral symmetry breaking~DCSB! occurs
when the fermion propagator develops a nonzero scalar self-
energy in the absence of an explicit chiral-symmetry-
breaking~ECSB! fermion mass. We will refer to coupling
constants strong enough to induce DCSB as supercritical and
those weaker as subcritical. We write the fermion propagator
as

S~p!5
Z~p2!

p”2M ~p2!
5

1

A~p2!p”2B~p2!
, ~1!

where we refer toA(p2)[1/Z(p2) as the finite momentum-
dependent fermion renormalization and where
M (p2)[B(p2)/A(p2) is the fermion mass function. In the
massless theory@i.e., in the absence of an ECSB bare ferm-
ion massm0(L)# by definition DCSB occurs whenM (p2)
Þ0.

With the exception of Refs.@6,7#, most studies have ne-
glected the issue of the subtractive renormalization of the
DSE for the fermion propagator. Typically these studies have
assumed an initially massless theory and have renormalized
at the ultraviolet cutoff of the loop integration, taking
Z15Z251. Where a nonzero bare mass has been used, it has
simply been added to the scalar term in the propagator. Al-
though there were earlier formal discussions of renormaliza-
tion @2,8–11#, the subtractive renormalization program had
not previously been implemented.

We will concentrate our discussion on quenched strong-
coupling QED4, where here the term ‘‘quenched’’ means
that the bare photon propagator is used in the fermion self-
energy DSE, so thatZ351 and there is no renormalization of
the electron charge. It should be carefully noted that this is a
slightly different usage from that found in lattice gauge
theory studies, since in DSE studies with a quenched photon
propagator virtual fermion loops may still be present in the
proper fermion-photon vertex.

The DSE for the renormalized fermion propagator, in an
arbitrary covariant gauge, is

S21~p!5Z2~m,L!@p”2m0~L!#2 iZ1~m,L!e2

3EL d4k

~2p!4
gmS~k!Gn~k,p!Dmn~q!; ~2!

here,q5k2p is the photon momentum,m is the renormal-
ization point, andL is a regularizing parameter~taken here
to be an ultraviolet momentum cutoff!. We writem0(L) for
the regularization-parameter-dependent bare mass. The
renormalized charge ise ~as opposed to the bare charge
e0), and the general form for the renormalized photon propa-
gator is

Dmn~q!5H S 2gmn1
qmqn

q2 D 1

11P~q2!
2j

qmqn

q2 J 1q2 ,
~3!

with j the renormalized covariant gauge parameter and
j0[Z3(m,L)j the corresponding bare one. In the quenched
approximation, we have for the coupling strength and gauge
parameter, respectively,a[e2/4p5a0[e0

2/4p and j5j0,
and for the photon propagator we have

Dmn~q!→D0
mn~q!5H S 2gmn1

qmqn

q2 D2j
qmqn

q2 J 1q2 .
~4!

The requirement of gauge invariance in QED leads to a
set of identities referred to as the Ward-Takahashi identities
~WTI’s!. The WTI for the fermion-photon vertex is

qmGm~k,p!5S21~k!2S21~p!, ~5!

whereq5k2p. This is a generalization of the original, dif-
ferential Ward identity, which expresses the effect of insert-
ing a zero-momentum photon vertex into the fermion propa-
gator:

]S21~p!

]pn
5Gn~p,p!. ~6!

The Ward identity, Eq.~6!, follows immediately from the
WTI of Eq. ~5!. In general, for nonvanishing photon momen-
tum q, only the longitudinal component of the proper vertex
is constrained; i.e., the WTI provides no information on
GT

n(k,p)[TmnGn(p,k) for qÞ0. @We use the notation
Tmn[gmn2(qmqn/q2) and Lmn[(qmqn/q2) for the trans-
verse and longitudinal projectors, respectively.# In particular,
the WTI guarantees the equality of the propagator and vertex
renormalization constants,Z2[Z1 ~at least in any sensible
choice of subtraction scheme@1#!. The WTI can be shown to
be satisfied order by order in perturbation theory and can
also be derived nonperturbatively.

As discussed in@1,12#, this can be thought of as just one
of a set of six general requirements on the vertex:~i! The
vertex must satisfy the WTI;~ii ! it should contain no kine-
matic singularities;~iii ! it should transform under charge
conjugation (C), parity inversion (P), and time reversal
(T) in the same way as the bare vertex, e.g.,

C21Gm~k,p!C52Gm
T~2p,2k! ~7!

55 3867RENORMALIZED STRONG-COUPLING QUENCHED QED . . .



~where the superscriptT indicates the transpose!; ~iv! it
should reduce to the bare vertex in the weak-coupling limit;
~v! it should ensure multiplicative renormalizability of the
DSE in Eq.~2!; ~vi! the transverse part of the vertex should
be specified to ensure gauge-covariance of the DSE.

Ball and Chiu@13# have given a description of the most
general fermion-photon vertex that satisfies the WTI; it con-
sists of a longitudinally constrained~i.e., ‘‘Ball-Chiu’’ ! part
GBC

m which is a minimal solution of the WTI with no artifi-
cial kinematic singularities, and a basis set of eight trans-
verse vectorsTi

m(k,p), which span the hyperplane specified
by LmnTi

n(k,p)50 @i.e., qnTi
n(k,p)50#, where q[k2p.

The minimal longitudinally constrained part of the vertex
will be referred to as the Ball-Chiu vertex and is given by

GBC
m ~k,p!5

1

2
@A~k2!1A~p2!#gm1

~k1p!m

k22p2

3H @A~k2!2A~p2!#
k/ 1p/

2

2@B~k2!2B~p2!#J . ~8!

Note that since neitherLmnGBC
n (k,p) nor TmnGBC

n (k,p) van-
ish identically, the Ball-Chiu vertex has both longitudinal
and transverse components. The transverse vectors can be
conveniently written as@14#

T1
m~k,p!5pm~k•q!2km~p•q!, ~9!

T2
m~k,p!5@pm~k•q!2km~p•q!#~k”1p” !,

~10!

T3
m~k,p!5q2gm2qmq” , ~11!

T4
m~k,p!5q2@gm~p”1k” !2pm2km#

22i ~p2k!mklpnsln , ~12!

T5
m~k,p!52 iqnsnm, ~13!

T6
m~k,p!5gm~p22k2!1~p1k!mq” ,

~14!

T7
m~k,p!5

1

2
~p22k2!@gm~p”1k” !2pm2km#

2 i ~k1p!mklpnsln , ~15!

T8
m~k,p!5 igmknplsnl1kmp”2pmk” ,

~16!

where we use the conventionsgmn5diag(1,21,21,21),
$gm,gn%52gmn, andsmn[( i /2)@gm,gn#. A general vertex is
then written as

Gm~k,p!5GBC
m ~k,p!1(

i51

8

t i~k
2,p2,q2!Ti

m~k,p!, ~17!

where thet i are functions that must be chosen to give the
correctC, P, andT invariance properties.

As previously mentioned, the renormalization procedure
is entirely standard. One first determines a finite,regularized
self-energy, which depends on both a regularization param-
eter and the renormalization point. One then performs a sub-

traction at the renormalization point, in order to define the
renormalization parametersZ1, Z2, andZ3 which give the
full ~renormalized! theory in terms of the regularized calcu-
lation. Consider the regularized self-energyS8(m,L;p),
leading to the DSE for the renormalized fermion propagator,

S21~p!5Z2~m,L!@p”2m0~L!#2S8~m,L;p!

5p”2m~m!2S̃~m;p!5A~p2!p”2B~p2!, ~18!

whereS̃(m;p) denotes therenormalizedself-energy and the
regularizedself-energy is given by@q[(k2p)#

S8~m,L;p!5 iZ1~m,L!e2EL d4k

~2p!4
glS~m;k!

3Gn~m;k,p!Dln~m;q!. ~19!

Here Dln(m;q) and Gn(m;k,p) denote the renormalized
photon propagator and photon-fermion proper vertex, respec-
tively. As suggested by the notation~i.e., the omission of the
L dependence! renormalized quantities must become inde-
pendent of the regularization parameter as the regularization
is removed~i.e., asL→`) in a renormalizable theory. The
self-energies are decomposed into Dirac and scalar parts:

S8~m,L;p!5Sd8~m,L;p2!p”1Ss8~m,L;p2! ~20!

@and similarly for the renormalized quantityS̃(m,p)#. By
imposing the renormalization boundary condition

S21~p!up25m25p”2m~m!, ~21!

one gets the relations

S̃d,s~m;p2!5Sd,s8 ~m,L;p2!2Sd,s8 ~m,L;m2! ~22!

for the self-energy,

Z2~m,L!511Sd8~m,L;m2! ~23!

for the renormalization constant, and

m0~L!5@m~m!2Ss8~m,L;m2!#/Z2~m,L! ~24!

for the bare mass. A mass renormalization constant can be
defined as

Zm~m,L!5m0~L!/m~m!, ~25!

i.e., as the ratio of the bare to renormalized mass. It should
be noted that this does not correspond to the usual mass
renormalization constant which one has in mind in QCD,
where it typically is taken to refer to the ratio of bare to
currentquark mass, i.e., after removing that part of the quark
mass due to dynamical chiral symmetry breaking. The vertex
renormalizationZ1(m,L) is identical toZ2(m,L) as long as
the vertexAnsatzsatisfies the Ward identity; this is how it is
recovered for multiplication intoS8(m,L;p) in Eq. ~19!.

The chiral limit occurs by definition when the bare mass
is set to zero and the regularization is removed, i.e., main-
tainingm0(L)50 while taking the limitL→`. Explicit chi-
ral symmetry breaking~ECSB! occurs when the bare mass
m0(L) is not zero. Dynamical mass generation or dynamical
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chiral symmetry breaking~DCSB! is said to have occurred
whenM (p2)Þ0 in the absence of ECSB. As the coupling
strength increases from zero there is a transition to a DCSB
phase at the critical coupling strengthac . Concisely, the
absence of ECSB means thatm0(L)50 and the absence of
both ECSB and DCSB~i.e., a,ac) means thatM (p2),
m(m), andm0(L) simultaneously vanish.@Recall that in the
notation that we use here,M (p2)[B(p2)/A(p2) andm(m)
[M (m2).# This is the same definition of the chiral limit that
is used in nonperturbative studies of QCD; see, e.g., Refs.
@1–4# and references therein. Obviously, any limiting proce-
dure where we takem0(L)→0 sufficiently rapidly as
L→` will also lead to the chiral limit.

Let us temporarily indicate explicitly the choice of renor-
malization point by am dependence of the renormalized
quantities, i.e., A(m;p2)[1/Z(m;p2), M (m;p2)[
B(m;p2)/A(m;p2), etc. Note that Eq.~18! implies that

A~m;p2!5Z2~m,L!2Sd8~m,L;p2!512S̃d~m,L;p2!,

B~m;p2!5Z2~m,L!m0~L!1Ss8~m,L;p2!

5m~m!1S̃s~m,L;p2!. ~26!

The renormalization point boundary condition in Eq.~21!
then leads toS̃(m,L;m2)50 or, equivalently, to the two
boundary conditions A(m;m2)51 and M (m;m2)5
B(m;m2)5m(m). From Eq.~26! we have

@A~m;p2!/Z2~m,L!#512@Sd8~m,L;p2!/Z2~m,L!#,

@B~m;p2!/Z2~m,L!#5m0~L!1@Ss8~m,L;p2!/Z2~m,L!#.
~27!

The renormalization group is the set of renormalization
point transformations which by definition leave the bare
quantities of the theory unchanged. Hence, sincem0(L) is
renormalization point independent, it is clear from Eq.~27!
that A(m;p2)/Z2(m,L), B(m;p2)/Z2(m,L), Sd8(m,L;p2)/
Z2(m,L), and Ss8(m,L;p2)/Z2(m,L) are renormalization
point independent. HenceS(m;p)Z2(m,L) is renormaliza-
tion point independent. In shorthand form we can express
this asS(m;p)}1/Z2(m,L) under a renormalization point
transformation. Hence, the choice of renormalization point is
equivalent to the choice of scale for the functionsA andB.
Similarly, in the general unquenched case@15# under a renor-
malization point transformation we have in addition
Dsn(m;q)}j(m)}1/Z3(m,L), e(m)}Z2(m,L)AZ3(m,L)/
Z1(m,L), andGn(m;q,p)}Z1(m,L). It is straightforward to
verify the consistency of these renormalization point trans-
formations. For example, from Eq.~19! we see that these
scaling properties ensure thatS8}Z2 and hence from Eq.
~18! thatS(p)}1/Z2 as it should. Thus, sinceZ15Z2, mul-
tiplicative renormalizability will automatically follow if we
ensure that G→cG as A(p2)→cA(p2) and B(p2)→
cB(p2). This behavior is automatic for the Ball-Chiu part of
the proper vertexGBC

n (m;p,k) as can be seen from Eq.~8!.
This consistency is unaffected by considering the quenched
photon propagator case whereZ351. Clearly in order to
ensure multiplicative renormalizability for an arbitrary ver-
tex it is necessary to choose the functionst i to scale in the

same way, i.e.,t i}ct i . This is the precise statement of the
restriction that multiplicative renormalizability imposes on
the proper photon-fermion vertex.

From the above arguments we see that under a renormal-
ization point transformation we must have,for all p2,

M ~m8;p2!5M ~m;p2![M ~p2!,

A~m8;p2!

A~m;p2!
5
Z2~m8,L!

Z2~m,L!
5A~m8;m2!5

1

A~m;m82!
, ~28!

from which it follows for the fermion propagator that
S(m8;p)/S(m;p)5Z2(m,L)/Z2(m8,L) in the usual way.
The behavior in Eq.~28! is explicitly tested for our numeri-
cal solutions. It is clear from Eq.~28! that having a solution
at one renormalization point (m) completely determines the
solution at any other renormalization point (m8) without the
need for any further calculation.

Example vertex choice

Our results and conclusions regarding the chiral limit are
general and do not depend on any specific vertex choice, i.e.,
any specific choice for the functionst i . We only require that
the vertex satisfy the Ward-Takahashi identity and that it be
consistent with multipicative renormalizability. However, in
order to discuss the renormalized finite solutions it is neces-
sary to present detailed numerical calculations. For this pur-
pose we will use as an example the modified treatment of the
Curtis-Pennington vertex introduced in Ref.@7#.

Curtis and Pennington published a series of articles
@8–11# describing their specification of a particular trans-
verse vertex term, in an attempt to produce gauge-covariant
and multiplicatively renormalizable solutions to the DSE. In
the framework of massless QED4, they eliminated the four
transverse vectors which are Dirac-even and must generate a
scalar term. By requiring that the vertexGm(k,p) reduce to
the leading logarithmic result fork@p they were led to
eliminate all the transverse basis vectors exceptT6

m , with a
dynamic coefficient chosen to make the DSE multiplicatively
renormalizable. This coefficient had the form

t6~k
2,p2,q2!52 1

2 @A~k2!2A~p2!#/d~k,p!, ~29!

whered(k,p) is a symmetric, singularity-free function ofk
and p, with the limiting behavior limk2@p2d(k,p)5k2.
@Here,A(p2)[1/Z(p2) is their 1/F(p2).# For purely mass-
less QED, they found a suitable formd(k,p)5(k22p2)2/
(k21p2). This was generalized to the case with a dynamical
massM (p2), to give

d~k,p!5
~k22p2!21@M2~k2!1M2~p2!#2

k21p2
. ~30!

It is clear that this choice scales as described in our discus-
sion above and is consistent with multiplicative renormaliz-
ability.

One refinement in our application of theC-P vertex@7# in
the present work is associated with subtleties in the ultravio-
let regularization scheme. Although there have been some
exploratory studies of dimensional regularization for the
DSE @16#, this has not yet proved practical in nonperturba-

55 3869RENORMALIZED STRONG-COUPLING QUENCHED QED . . .



tive field theory and momentum cutoffs for now remain the
regularization scheme of choice in such studies. Naive
imposition of a momentum cutoff destroys the gauge cova-
riance of the DSE because the fermion self-energy inte-
gral contains terms, related to the vertex WTI, which should
vanish but which are nonzero when integrated under cutoff
regularization @17,18#. Based on these considera-
tions a ‘‘gauge-covariance-improved’’ treatment of the
C-P vertex was proposed, which consists of the replace-
ment ~in the quenched approximation! Sd8(m,L;p2)1
Z1(m,L)aj/8p→Sd8(m,L;p2). Full details and the deriva-
tion of this modification can be found in Appendix A of Ref.
@7#. This quenched approximation correction does not spoil
the scaling needed for multiplicative renormalization since in
the quenched approximation the correction term scales with
Z2(m,L) as doesS8. We have now fully specified the
sample vertex that we use in our numerical calculations.

For the numerical calculations@1,6,7# the equations are
separated into a Dirac-odd part describing the finite propaga-
tor renormalizationA(p2) and a Dirac-even part for the sca-
lar self-energy, by taking14Tr of the DSE multiplied by
p” /p2 and 1, respectively. The equations are solved in Euclid-
ean space and so the volume integrals*d4k can be separated
into angle integrals and an integral*dk2; the angle integrals
are easy to perform analytically, yielding the two equations
which will be solved numerically.

In order to obtain numerical solutions, the final
Minkowski-space integral equations are first rotated to Eu-
clidean space. They are then solved by iteration on a loga-
rithmic grid from an initial guess. The solutions are con-
firmed to be independent of the initial guess and are solved
with a wide range of cutoffs (L), renormalization points
(m), couplings (a), covariant gauge choices@j(m)#, and
renormalized masses@m(m)#. As has been reported in detail
elsewhere@6,7#, choosing the renormalized massm(m) and
then solving for the bare massm0(L) leads to extremely
well behaved finite solutions forA(p2) andM (p2), which do
not vary as we take the continuum limit (L→`). In addi-
tion, the renormalization point transformation properties
given in Eq.~28! have also been explicitly verified using our
numerical solutions, which typically have an accuracy of bet-
ter than 1 in 104.

An important outcome of these studies was the observa-
tion that all solutions which were well-behaved in the con-
tinuum limit contained decaying oscillations in the mass
functionM (p2) if one looked sufficiently far into the ultra-
violet ~in p2). As a result, asL→` for any given solution
the values for the bare mass also presented a decaying oscil-
latory behaviour@7#. Clearly, these oscillating solutions can-
not be obtained from the chiral limit procedure@i.e.,
m0(L)50 andL→`# and hence cannot be chirally sym-
metric solutions.

III. RESULTS

To motivate our general arguments concerning the chiral
limit, let us consider Fig. 1, which shows the nonoscillating
solutionsA(p2) andM (p2) for supercritical coupling and
with m0(L)50, for a wide range of values ofL. For any
given set of parametersa, m0(L), m, j, andL it is always
possible to find such a nonoscillating solution. It is clear

from these numerical solutions that in the continuum limit
~i.e., L→`) and for supercritical coupling, we find
A(p2)→1 for all p2 and a mass functionM (p2) which di-
verges proportionally toL. This divergent behavior of the
mass was verified to the numerical accuracy of our solutions
~1 in 104). Conversely, for subcritical coupling~i.e.,
a,ac), the chiral limit does exist and we find simply that
A(m;p2)5(p2/m2)2aj/4p. It seems clear from these numeri-
cal studies that above critical coupling there is no finite chi-
ral limit in the continuum quenched theory in any covariant
gauge, even in the presence of the renormalization proce-
dure. In the absence of any renormalization program, this

FIG. 1. The behavior of the finite renormalizationA(p2) and the
mass functionM (p2) as a function of the ultraviolet cutoffL for
m0(L)50. These solutions were for renormalization point
m25104, couplinga51.15, and gauge parameterj50.25. Clearly
asL→` we find A(p2)→1 for all p2 andM (p2) diverges with
L.
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divergent behavior of the mass is well known~see, e.g., Refs.
@10,11#! and is inevitable since in the absence of ECSB in
the quenched theory there is only one external scale~i.e.,
L).

While the above conclusions were based on a numerical
study with a specific choice of vertex, it is relatively straight-
forward to construct a general argument which applies irre-
spective of this choice: Consider any vertexG which satisfies
the WTI and which leads to multiplicative renormalizability
@7#. It automatically follows that M (p2) and
A(p2)/Z2(m,L) are renormalization point independent as
discussed previously. We can then define dimensionless
quantities by appropriately scaling withL, i.e., m̂[m/L,
p̂2[p2/L2, M̂ ( p̂2)[M (p2)/L, Â( p̂2)[A(m;p2)/Z2(m,L),
andm̂0[m0(L)/L. Note that the renormalization condition
A(m;m2)51 automatically determinesZ2(m,L) for a given
solution for fixedL @see Eq.~23!#. The dimensionless func-
tions M̂ ( p̂2) andÂ( p̂2) of the dimensionless variablep̂2 can
only depend on dimensionless parameters, i.e.,a, j, m̂, and
m̂0. Furthermore, since for any fixedL they are independent
of m ~recall that we are working only in the quenched ap-
proximation!, then it follows that they must in turn be inde-
pendent of m̂. Now for any finite L and the choice
m0(L)50 we havem̂050. Hence solving for anym and
L with m0(L)50 allows us to formM̂ (p2) andÂ(p2), from
which we can read off the solutions forA(p2) andM (p2) for
any otherm andL with vanishing bare mass using the above
rules. We see then that the resultingM (p2) must diverge
with L as was found numerically. To summarize, we see that
above critical coupling any vertex which satisfies the WTI

and leads to multiplicative renormalizability will lead to a
diverging mass function in the continuum limit for quenched
QED in four dimensions.

It is interesting to contrast this result with the well-known
behavior@19# found in QCD, which leads to a well-defined
and finite chiral limit in the continuum. The asymptotic be-
havior of QCD has been well established in the ultraviolet
regime due to asymptotic freedom in the form of a decreas-
ing running coupling constantas(m). This can be used in a
renormalization-group-improved treatment of the ultraviolet
region in the DSE study of DCSB in the quark propagator
@1–3,20#.

Given that we know that the chiral limit leads to a diver-
gent mass function above critical coupling, what are we then
to make of the well-behaved finite solutions? Our conven-
tional thinking about the chiral limit would imply that since
ECSB should only increase the mass function above that
found in its absence, then any solution above critical cou-
pling which also has ECSB in the conventional sense must
also correspond to a divergent mass in the continuum limit.
Thus the finite solutions do not correspond to the chiral limit
or to any conventional concept of ECSB.

It has by now probably become clear that a given set of
the parametersa, m0(L), m, j, andL actually admits more
than one finite solution. If the renormalization pointm is
chosen to lie far enough in the infrared that no oscillations in
the mass can occur forp2,m2, then specifying the renor-
malized massm(m) rather than the bare massm0(L) leads
to a unique solution. This corresponds to the procedure used
in obtaining the numerical solutions in Refs.@6,7#. We ex-
plicitly show this behavior in Figs. 2 and 3, where for a
given set of parametersa, m0(L), m, j, andL we see that
there are distinct solutions. AsL→` the number of simul-

FIG. 2. The relationship between the bare mass@m0(L)# and
the renormalized mass@m(m)# for the renormalized finite solutions.
These result from solving for a givenm(m) and extracting the
correspondingm0(L). The other parameters for these solutions
were renormalization pointm25104, couplinga51.25, gauge pa-
rameterj50.25, andL251014. The dashed horizontal line shows,
e.g., that form0(L)50.1 there are three solutions.~The dashed
vertical lines connecting the upper and lower curves are merely to
guide the eye on this back-to-back logarithmic scale.!

FIG. 3. The three renormalized finite solutions corresponding to
the same bare mass, i.e.,m0(L)50.1, as indicated in Fig. 2. The
other parameters for these solutions were renormalization point
m25104, coupling a51.25, gauge parameterj50.25, and
L251014. ~The short-long dashed vertical lines connecting the up-
per and lower curves are merely to guide the eye on this back-to-
back logarithmic scale.!
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taneous solutions becomes infinite. This can be understood in
the following way. The oscillations have a period in terms of
ln(p2) which is independent ofL @7#. Thus the higherL is,
the more oscillations can be squeezed in between the IR and
UV cutoffs. As we increasem(m) with everything else fixed,
we push oscillations along thep2 axis. Each time that a full
oscillation is pushed past the UV cutoff (L2) there will be
two solutions which give the same value form0(L).

It seems reasonable to expect that we can also induce
these multiple solutions in QCD by loweringm(m) below
that which corresponds to the chiral limit. This would corre-
spond to a ‘‘negative’’ ECSB and would then again lead to
multiple solutions. A numerical test of this expectation is
currently being pursued by implementing the renormaliza-
tion program in a QCD-based study of the quark DSE@21#.
While the DSE for the quark propagator is not yet well un-
derstood in the IR, multiple solutions should manifest them-
selves in the UV and will not depend on the detailedAnsätze
used for the QCD propagators and vertex in the IR.

IV. SUMMARY AND CONCLUSIONS

We have studied renormalized quenched strong-coupling
QED in four dimensions in arbitrary covariant gauge using a
momentum cutoff regularization. We saw that there is no
~nonzero! finite chiral limit of the renormalized theory on
general grounds above the critical coupling. In addition, we
showed that above critical coupling for the gauge-
covariance-improved treatment of the Curtis-Pennington
proper fermion-photon vertex, there are an infinite number of
renormalized finite solutions corresponding to the same bare
mass in the continuum limit. All of the~nonzero! finite so-
lutions have oscillations and differ in how far out on the
momentum scale the first oscillation occurs. Theonly solu-

tions found above critical coupling were~i! the trivial
M (p2)50 solution with vanishing bare mass, and~ii ! the
multiple, oscillating solutions.

Since above critical coupling a finite continuum chiral
limit does not exist, these finite solutions in the supercritical
region may in some sense correspond to explicit chiral-
symmetry-breaking modes built on the unstable chiral-
symmetric solution. It seems likely that this behavior for the
finite solutions is independent of the detailed vertex choice
and furthermore that the same behavior can be induced in
QCD by forcing the renormalized mass into an unphysical
regime@by choosingm(m)[M (m2) below the value corre-
sponding to the chiral limit#. It also seems likely that un-
quenching the theory will not remove this rather undesirable
behavior in QED4, since the running coupling increases with
scale rather than decreasing as in QCD. These latter conjec-
tures are the subject of current investigation@21#. This study
supports the assertion that in four dimensions strong-
coupling QED does not have a continuum limit in the con-
ventional sense.
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