4,454 research outputs found

    Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes

    Full text link
    We report two-dimensional MHD simulations which demonstrate that photospheric 5-min oscillations can leak into the chromosphere inside small-scale vertical magnetic flux tubes. The results of our numerical experiments are compatible with those inferred from simultaneous spectropolarimetric observations of the photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter (TIP) at 10830 A. We conclude that the efficiency of energy exchange by radiation in the solar photosphere can lead to a significant reduction of the cut-off frequency and may allow for the propagation of the 5 minutes waves vertically into the chromosphere.Comment: accepted by ApJ

    Charmed Strange Pentaquarks in the Large NcN_c Limit

    Get PDF
    The properties of pentaquarks containing a heavy anti-quark and strange quarks are studied in the bound state picture. In the flavor SU(3) limit, there are many pentaquark states with the same binding energy. When the SU(3) symmetry breaking effects are included, however, three states become particularly stable due to a ``Gell-Mann--Okubo mechanism''. They are the Qˉsuud\bar Qsuud and Qˉsudd\bar Qsudd states discussed by Lipkin, and a a previously unstudied Qˉssud\bar Qssud state. These states will have JP=12+J^P={1\over2}^+ and their masses are estimated. These states, if exist, may be seen in experiments in the near future.Comment: 12 pages in REVTeX, no figure

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc1N_c-1 heavy antiquarks, exotic (2Nc2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure

    Inferring and perturbing cell fate regulomes in human brain organoids

    Get PDF
    Self-organizing neural organoids grown from pluripotent stem cells(1-3) combined with single-cell genomic technologies provide opportunities to examine gene regulatory networks underlying human brain development. Here we acquire single-cell transcriptome and accessible chromatin data over a dense time course in human organoids covering neuroepithelial formation, patterning, brain regionalization and neurogenesis, and identify temporally dynamic and brain-region-specific regulatory regions. We developed Pando-a flexible framework that incorporates multi-omic data and predictions of transcription-factor-binding sites to infer a global gene regulatory network describing organoid development. We use pooled genetic perturbation with single-cell transcriptome readout to assess transcription factor requirement for cell fate and state regulation in organoids. We find that certain factors regulate the abundance of cell fates, whereas other factors affect neuronal cell states after differentiation. We show that the transcription factor GLI3 is required for cortical fate establishment in humans, recapitulating previous research performed in mammalian model systems. We measure transcriptome and chromatin accessibility in normal or GLI3-perturbed cells and identify two distinct GLI3 regulomes that are central to telencephalic fate decisions: one regulating dorsoventral patterning with HES4/5 as direct GLI3 targets, and one controlling ganglionic eminence diversification later in development. Together, we provide a framework for how human model systems and single-cell technologies can be leveraged to reconstruct human developmental biology

    Vortex, skyrmion and elliptical domain wall textures in the two-dimensional Hubbard model

    Full text link
    The spin and charge texture around doped holes in the two-dimensional Hubbard model is calculated within an unrestricted spin rotational invariant slave-boson approach. In the first part we examine in detail the spin structure around two holes doped in the half-filled system where we have studied cluster sizes up to 10 x 10. It turns out that the most stable configuration corresponds to a vortex-antivortex pair which has lower energy than the Neel-type bipolaron even when one takes the far field contribution into account. We also obtain skyrmions as local minima of the energy functional but with higher total energy than the vortex solutions. Additionally we have investigated the stability of elliptical domain walls for commensurate hole concentrations. We find that (i) these phases correspond to local minima of the energy functional only in case of partially filled walls, (ii) elliptical domain walls are only stable in the low doping regime.Comment: 7 pages, 6 figures, accepted for Phys. Rev.

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.

    Electron-Like Fermi Surface and Remnant (pi,0) Feature in Overdoped La1.78Sr0.22CuO4

    Full text link
    We have performed an angle-resolved photoemission study of overdoped La1.78Sr0.22CuO4, and have observed sharp nodal quasiparticle peaks in the second Brillouin zone that are comparable to data from Bi2Sr2CaCu2O8+d. The data analysis using energy distribution curves, momentum distribution curves and intensity maps all show evidence of an electron-like Fermi surface, which is well explained by band structure calculations. Evidence for many-body effects are also found in the substantial spectral weight remaining below the Fermi level around (pi,0), where the band is predicted to lie above EF.Comment: 4 pages, 4 figure

    Dual Nature of the Electronic Structure of the Stripe Phase

    Full text link
    High resolution angle-resolved photoemission measurements have been carried out on (La_1.4-xNd_0.6Sr_x)CuO_4, a model system with static stripes, and (La_1.85Sr_0.15)CuO_4, a high temperature superconductor (T_c=40K) with dynamic stripes. In addition to the straight segments near (pi, 0) and (0, pi) antinodal regions, we have identified the existence of nodal spectral weight and its associated Fermi surface in the electronic structure of both systems. The ARPES spectra in the nodal region show well-defined Fermi cut-off, indicating a metallic character of this charge-ordered state. This observation of nodal spectral weight, together with the straight segments near antinodal regions, reveals dual nature of the electronic structure of the stripes due to the competition of order and disorder

    Band Alignments, Electronic Structure, and Core-Level Spectra of Bulk Molybdenum Dichalcogenides (MoS<inf>2</inf>, MoSe<inf>2</inf>, and MoTe<inf>2</inf>)

    Get PDF
    A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work

    Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films

    Full text link
    We have studied the magnetotransport properties in the normal state for a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and 0.12. A variable degree of compressive or tensile strain results from the lattice mismatch between the substrate and the film, and affects the transport properties differently from the influence of the zinc impurities. In particular, the orbital magnetoresistance (OMR) varies with y but is strain-independent. The relations for the resistivity and the Hall angle and the proportionality between the OMR and tan^2 theta are followed about 70 K. We have been able to separate the strain and impurity effects by rewriting the above relations, where each term is strain-independent and depends on y only. We also find that changes in the lattice constants give rise to closely the same fractional changes in other terms of the equation.The OMR is more strongly supressed by the addition of impurities than tan^2 theta. We conclude that the relaxation ratethat governs Hall effect is not the same as for the magnetoresistance. We also suggest a correspondence between the transport properties and the opening of the pseudogap at a temperature which changes when the La-sr ratio changes, but does not change with the addition of the zinc impurities
    corecore