582 research outputs found
Detection of Ser/Thr protein phosphatases in Neurospora crassa
Protein phosphorylation is a frequent posttranslational modification regulating cellular processes in eukaryotes. The phosphate content of a protein is determined by the conflicting activities of protein kinases and phosphatases. Protein phosphatases were divided into Ser/Thr and Tyr specific groups, depending on the phosphorylated residue in the substrate molecules. The former group was further classified based on enzymatic criteria (reviewed in Cohen 1989 Ann. Rev. Biochem. 58:453-508). Protein phosphatase 1 (PP1) is inhibited by two heat stable proteins termed inhibitor-1 and -2. Protein phosphatase 2A is inhibited by nanomolar concentration of the tumor promoter okadaic acid. Protein phosphatase 2B (PP2B) - also called calcineurin - is stimulated by Ca-calmodulin, and protein phosphatase 2C (PP2C) is a Mg2+ dependent enzyme. Molecular cloning of the catalytic subunits revealed that PP1-PP2A-PP2B consist of a highly conserved superfamily of proteins
A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin
quantum computer using tellurium impurities in silicon. This approach to
quantum computing combines the well-developed silicon technology with expected
advances in MRFM.Comment: 9 pages, 1 figur
Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms
The standard numerical approach to determining matrix elements of local
operators and width of resonances uses the finite volume dependence of energy
levels and matrix elements. Finite size corrections that decay exponentially in
the volume are usually neglected or taken into account using perturbation
expansion in effective field theory. Using two-dimensional sine-Gordon field
theory as "toy model" it is shown that some exponential finite size effects
could be much larger than previously thought, potentially spoiling the
determination of matrix elements in frameworks such as lattice QCD. The
particular class of finite size corrections considered here are mu-terms
arising from bound state poles in the scattering amplitudes. In sine-Gordon
model, these can be explicitly evaluated and shown to explain the observed
discrepancies to high precision. It is argued that the effects observed are not
special to the two-dimensional setting, but rather depend on general field
theoretic features that are common with models relevant for particle physics.
It is important to understand these finite size corrections as they present a
potentially dangerous source of systematic errors for the determination of
matrix elements and resonance widths.Comment: 26 pages, 13 eps figures, LaTeX2e fil
Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells
Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si
quantum wells we determine the carrier-density-dependence of the magnetic
susceptibility. Assuming weak interaction we evaluate the density of states at
the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant
at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11
cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the
mobility from q_TF yields good agreement with experimental values justifying
the approach. The decrease in D(E_F) is explained by potential fluctuations
which lead to tail states that make screening less efficient and - in a
positive feedback - cause an increase of the potential fluctuations. Even in
our high mobility samples the fluctuations exceed the electron-electron
interaction leading to the formation of puddles of mobile carriers with at
least 1 micrometer diameter.Comment: 4 pages, 3 figure
Supersymmetry and discrete transformations of the Dirac operators in Taub-NUT geometry
It is shown that the N=4 superalgebra of the Dirac theory in Taub-NUT space
has different unitary representations related among themselves through unitary
U(2) transformations. In particular the SU(2) transformations are generated by
the spin-like operators constructed with the help of the same covariantly
constant Killing-Yano tensors which generate Dirac-type operators. A parity
operator is defined and some explicit transformations which connect the
Dirac-type operators among themselves are given. These transformations form a
discrete group which is a realization of the quaternion discrete group. The
fifth Dirac operator constructed using the non-covariant Killing-Yano tensor of
the Taub-NUT space is quite special. This non-standard Dirac operator is
connected with the hidden symmetry and is not equivalent to the Dirac-type
operators of the standard N=4 supersymmetry.Comment: 14 pages, latex, no figure
Quantum computing with antiferromagnetic spin clusters
We show that a wide range of spin clusters with antiferromagnetic
intracluster exchange interaction allows one to define a qubit. For these spin
cluster qubits, initialization, quantum gate operation, and readout are
possible using the same techniques as for single spins. Quantum gate operation
for the spin cluster qubit does not require control over the intracluster
exchange interaction. Electric and magnetic fields necessary to effect quantum
gates need only be controlled on the length scale of the spin cluster rather
than the scale for a single spin. Here, we calculate the energy gap separating
the logical qubit states from the next excited state and the matrix elements
which determine quantum gate operation times. We discuss spin cluster qubits
formed by one- and two-dimensional arrays of s=1/2 spins as well as clusters
formed by spins s>1/2. We illustrate the advantages of spin cluster qubits for
various suggested implementations of spin qubits and analyze the scaling of
decoherence time with spin cluster size.Comment: 15 pages, 7 figures; minor change
Holographic Vitrification
We establish the existence of stable and metastable stationary black hole
bound states at finite temperature and chemical potentials in global and planar
four-dimensional asymptotically anti-de Sitter space. We determine a number of
features of their holographic duals and argue they represent structural
glasses. We map out their thermodynamic landscape in the probe approximation,
and show their relaxation dynamics exhibits logarithmic aging, with aging rates
determined by the distribution of barriers.Comment: 100 pages, 25 figure
Limits on WWgamma and WWZ Couplings from W Boson Pair Production
The results of a search for W boson pair production in pbar-p collisions at
sqrt{s}=1.8 TeV with subsequent decay to emu, ee, and mumu channels are
presented. Five candidate events are observed with an expected background of
3.1+-0.4 events for an integrated luminosity of approximately 97 pb^{-1}.
Limits on the anomalous couplings are obtained from a maximum likelihood fit of
the E_T spectra of the leptons in the candidate events. Assuming identical
WWgamma and WWZ couplings, the 95 % C.L. limits are -0.62<Delta_kappa<0.77
(lambda = 0) and -0.53<lambda<0.56 (Delta_kappa = 0) for a form factor scale
Lambda = 1.5 TeV.Comment: 10 pages, 1 figure, submitted to Physical Review
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- âŠ