56 research outputs found

    Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase

    Get PDF
    The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes. However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa cells are an ideal null background in which the role of iAs methylation in modulation of toxic and cancer-promoting effects of this metalloid can be examined. A retroviral gene delivery system was used in this study to create a clonal UROtsa cell line (UROtsa/F35) that expresses rat AS3MT. Here, we characterize the metabolism and cytotoxicity of arsenite (iAsIII) and methylated trivalent arsenicals in parental cells and clonal cells expressing AS3MT. In contrast to parental cells, UROtsa/F35 cells effectively methylated iAsIII, yielding methylarsenic (MAs) and dimethylarsenic (DMAs) containing either AsIII or AsV. When exposed to MAsIII, UROtsa/F35 cells produced DMAsIII and DMAsV. MAsIII and DMAsIII were more cytotoxic than iAsIII in UROtsa and UROtsa/F35 cells. The greater cytotoxicity of MAsIII or DMAsIII than of iAsIII was associated with greater cellular uptake and retention of each methylated trivalent arsenical. Notably, UROtsa/F35 cells were more sensitive than parental cells to the cytotoxic effects of iAsIII but were more resistant to cytotoxicity of MAsIII. The increased sensitivity of UROtsa/F35 cells to iAsIII was associated with inhibition of DMAs production and intracellular accumulation of MAs. The resistance of UROtsa/F35 cells to moderate concentrations of MAsIII was linked to its rapid conversion to DMAs and efflux of DMAs. However, concentrations of MAsIII that inhibited DMAs production by UROtsa/F35 cells were equally toxic for parental and clonal cell lines. Thus, the production and accumulation of MAsIII is a key factor contributing to the toxicity of acute iAs exposures in methylating cells

    Mathematical model insights into arsenic detoxification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs), which then undergoes hepatic methylation to methylarsonic acid (MMAs) and a second methylation to dimethylarsinic acid (DMAs). Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation.</p> <p>Methods</p> <p>We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects.</p> <p>Results</p> <p>We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic methyltransferase has been upregulated by a factor of two in this population. Finally, we also show that a modification of the model gives excellent fits to the data on arsenic metabolism in human cultured hepatocytes.</p> <p>Conclusions</p> <p>The analysis of the Bangladesh data using the model suggests that folate supplementation may be more effective at reducing whole body arsenic than previously expected. There is almost no data on the upregulation of arsenic methyltransferase in populations chronically exposed to arsenic. Our model predicts upregulation by a factor of two in the Bangladesh population studied. This prediction should be verified since it could have important public health consequences both for treatment strategies and for setting appropriate limits on arsenic in drinking water. Our model has compartments for the binding of arsenicals to proteins inside of cells and we show that these comparments are necessary to obtain good fits to data. Protein-binding of arsenicals should be explored in future biochemical studies.</p

    Arsenic Trioxide Exerts Antimyeloma Effects by Inhibiting Activity in the Cytoplasmic Substrates of Histone Deacetylase 6

    Get PDF
    Arsenic trioxide (As2O3) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As2O3 have not yet been defined. In this study, we investigated the effect of As2O3 on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As2O3 exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As2O3 acts directly on MM cells at relatively low concentrations of 0.5∼2.5 µM, which effects survival and apoptosis of MM cells. However, As2O3 inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 µM). Subsequently, we found that As2O3 treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As2O3 down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As2O3 on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As2O3 in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As2O3 can be extended readily using all the HDAC associated diseases

    Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

    Get PDF
    Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide

    Pentoxifylline influences drug transport activity of P-glycoprotein and decreases mdr1 gene expression in multidrug resistant mouse leukemic L1210/VCR cells

    No full text
    The effects of pentoxifylline (PTX) on intracellular accumulation of doxorobicin (DOX), DOX cytotoxicity and expression of Pgp in multidrug resistant L1210/VCR cell line were investigated. PTX (100 mg/l) was able to enhance the DOX accumulation in resistant cells. The maximum intracellular levels of DOX were reached after treatment with PTX for 24 hours (total duration of PTX-treatment was 72 hours). The levels of mdrl mRNA (measured by RT-PCR method) were decreased 2-fold in the presence of 100 mg/l PTX (minimum reached within 48 hours) in comparison to control cells

    Reversal of P-glycoprotein mediated vincristine resistance of L1210/VCR cells by analogues of pentoxifylline - A QSAR study

    No full text
    In our previous papers we described the ability of methylxanthine pentoxifylline (PTX) to depress the P-glycoprotein (P-gp) mediated multidrug resistance (MDR) of the mouse leukemic cell line L1210/VCR. Other methylxanthines like caffeine and theophylline were found to be ineffective in this respect. In the present paper we have analysed the capability of 25 methylxanthines to depress MDR of L1210/VCR cells. These methylxanthines structurally differ in substituents located in positions N1, N3, N7 and C8. The results indicate that for an effective reversal of P-gp mediated MDR of our cells the existence of a longer polar substituent in the position N1 plays a crucial role. The elongation of the substituent in the positions N3 and N7 (from methyl to propyl) increases and in the position C8 (from H to propyl) decreases the efficacy of xanthines to reverse the vincristine resistance of L1210/VCR cells. The multiple linear regression for effectiveness of methylxanthines in reversal of P-gp mediated MDR of L1210/VCR cells (expressed as respective IC50r values) has been computed, with molar weight: Mw, molar volume: VM, molar refractivity: RM, crystal density: d and partition coefficient n-octanol/water: log P as descriptors. A high intercorrelation of MW, VM and R M was found for the tested group of methylxanthines indicating that only one of these parameters is necessary for testing a potential correlation. The best fit in the multiple linear regression was obtained for RM applied together with d and log P and resulted in a QSAR model given by the following equation: IC50r = -[(32.3 ± 7.2) × 10 -3 × RM] + [(10.1 ± 2.3) × d] + [(0.74 ± 0.10) × log P] - [10.5 ± 3.2]. Model revealed that: (i) the molar refractivity influences the effectiveness of xanthine positively; (ii) the crystal density and partition coefficient influence the MDR reversal effectiveness of xanthine negatively
    • …
    corecore