275 research outputs found

    JUpdate: A JSON Update Language

    Get PDF
    Although JSON documents are being used in several emerging applications (e.g., Big Data applications, IoT, mobile computing, smart cities, and online social networks), there is no consensual or standard language for updating JSON documents (i.e., creating, deleting or changing such documents, where changing means inserting, deleting, replacing, copying, moving, etc., portions of data in such documents). To fill this gap, we propose in this paper an SQL-like language, named JUpdate, for updating JSON documents. JUpdate is based on a set of six primitive update operations, which is proven complete and minimal, and it provides a set of fourteen user-friendly high-level operations with a well-founded semantics defined on the basis of the primitive update operations

    Modeling and simulation of high speed milling centers dynamics

    Get PDF
    High speed machining is a milling operation in industrial production of aeronautic parts, molds and dies. The parts production is being reduced because of the slowing down of the machining resulting from the tool path discontinuity machining strategy. In this article, we propose a simulation tool of the machine dynamic behavior, in complex parts machining. For doing this, analytic models have been developed expressing the cutting tool feed rate. Afterwards, a simulation method, based on numerical calculation tools, has been structured. In order to validate our approach, we have compared the simulation results with the experimental ones, for the same examples

    Simulation of the deflected cutting tool trajectory in complex surface milling

    Get PDF
    Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zearalenone (ZEA) is a phytoestrogen from <it>Fusarium </it>species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved.</p> <p>Methods</p> <p>Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach.</p> <p>Results</p> <p>ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and calreticulin, whereas only <it>ERp29 </it>mRNA transcript increased.</p> <p>Conclusion</p> <p>ZEA induced human leukemic cell apoptosis via endoplasmic stress and mitochondrial pathway.</p
    corecore